IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v430y2022ics0096300322003757.html
   My bibliography  Save this article

Random integrodifferential equations of Volterra type with delay : attractiveness and stability

Author

Listed:
  • Diop, Amadou
  • Dieye, Moustapha
  • Hazarika, Bipan

Abstract

In this paper, the existence and the uniqueness of mild solutions of random integrodifferential equations are studied. To obtain random solutions, we develop a new tool in the resolvent operator theory and apply several fixed-point theorems. In addition, we establish the properties of mean-square stability and attractiveness. In the end, examples are worked out and we apply the theoretical outcomes to a type of the Heath-Jarrow-Morton-Musiela (HJMM) equation.

Suggested Citation

  • Diop, Amadou & Dieye, Moustapha & Hazarika, Bipan, 2022. "Random integrodifferential equations of Volterra type with delay : attractiveness and stability," Applied Mathematics and Computation, Elsevier, vol. 430(C).
  • Handle: RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003757
    DOI: 10.1016/j.amc.2022.127301
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322003757
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    2. Kazemi, M. & Yaghoobnia, A.R., 2022. "Application of fixed point theorem to solvability of functional stochastic integral equations," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    2. Will Hicks, 2020. "Pseudo-Hermiticity, Martingale Processes and Non-Arbitrage Pricing," Papers 2009.00360, arXiv.org, revised Apr 2021.
    3. Eckhard Platen, 2005. "An Alternative Interest Rate Term Structure Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(06), pages 717-735.
    4. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    5. Chen An & Mahayni Antje B., 2008. "Endowment Assurance Products: Effectiveness of Risk-Minimizing Strategies under Model Risk," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(2), pages 1-29, March.
    6. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    7. Lian, Yu-Min & Chen, Jun-Home, 2021. "Pricing virtual currency-linked derivatives with time-inhomogeneity," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 424-439.
    8. Dan Pirjol & Lingjiong Zhu, 2019. "Explosion in the quasi-Gaussian HJM model," Papers 1908.07102, arXiv.org.
    9. Ting‐Pin Wu & Son‐Nan Chen, 2008. "Valuation of floating range notes in a LIBOR market model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(7), pages 697-710, July.
    10. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    11. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    12. Mahdavi, Mahnaz, 2008. "A comparison of international short-term rates under no arbitrage condition," Global Finance Journal, Elsevier, vol. 18(3), pages 303-318.
    13. Ernst Eberlein & Nataliya Koval, 2006. "A cross-currency Levy market model," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 465-480.
    14. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen & Erik Schlögl, 2009. "Alternative Defaultable Term Structure Models," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 1-31, March.
    15. Sorwar, Ghulam & Barone-Adesi, Giovanni & Allegretto, Walter, 2007. "Valuation of derivatives based on single-factor interest rate models," Global Finance Journal, Elsevier, vol. 18(2), pages 251-269.
    16. Y. D'Halluin & P. A. Forsyth & K. R. Vetzal & G. Labahn, 2001. "A numerical PDE approach for pricing callable bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(1), pages 49-77.
    17. Giandomenico, Rossano, 2006. "Valuing an American Put Option," MPRA Paper 20082, University Library of Munich, Germany.
    18. John T. Barkoulas & Christopher F. Baum & Joseph Onochie, 1997. "A nonparametric investigation of the 90‐day t‐bill rate," Review of Financial Economics, John Wiley & Sons, vol. 6(2), pages 187-198.
    19. Chuang-Chang Chang & Ruey-Jenn Ho & Chengfew Lee, 2010. "Pricing credit card loans with default risks: a discrete-time approach," Review of Quantitative Finance and Accounting, Springer, vol. 34(4), pages 413-438, May.
    20. Raphaël Douady, 2013. "Yield Curve Smoothing and Residual Variance of Fixed Income Positions," Post-Print hal-00666751, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.