IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v381y2020ics0096300320302708.html
   My bibliography  Save this article

Turing instability induced by random network in FitzHugh-Nagumo model

Author

Listed:
  • Zheng, Qianqian
  • Shen, Jianwei

Abstract

Although there is general agreement that the network plays an essential role in the biological system, how the connection probability of network affects the natural model(Especially neural network) is poorly understood. In this paper, we show the impact of the network on Turing instability in the FitzHugh-Nagumo(FN) model. Then we obtain the condition of how the Turing bifurcation, saddle-node bifurcation, and Turing instability occur. By using the Gershgorin circle theorem, we investigate the relationship between degree and eigenvalue of the network matrix, and obtain the approximate range of eigenvalue of the network matrix. Also, We derive the instability condition about diffusion and the connection probability in the network-organized system. And then we obtain the estimated range of connection probability. Meanwhile we apply these results to explaining the spiking of neuron and find this system has rich dynamics behavior. Finally, the numerical simulation verifies our analytical results.

Suggested Citation

  • Zheng, Qianqian & Shen, Jianwei, 2020. "Turing instability induced by random network in FitzHugh-Nagumo model," Applied Mathematics and Computation, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:apmaco:v:381:y:2020:i:c:s0096300320302708
    DOI: 10.1016/j.amc.2020.125304
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320302708
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iqbal, Naveed & Wu, Ranchao & Liu, Biao, 2017. "Pattern formation by super-diffusion in FitzHugh–Nagumo model," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 245-258.
    2. Malbor Asllani & Joseph D. Challenger & Francesco Saverio Pavone & Leonardo Sacconi & Duccio Fanelli, 2014. "The theory of pattern formation on directed networks," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Qianqian & Shen, Jianwei & Pandey, Vikas & Guan, Linan & Guo, Yantao, 2023. "Turing instability in a network-organized epidemic model with delay," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Zheng, Qianqian & Shen, Jianwei & Xu, Yong & Pandey, Vikas & Guan, Linan, 2022. "Pattern mechanism in stochastic SIR networks with ER connectivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    3. Chen, Mengxin & Wu, Ranchao & Liu, Hongxia & Fu, Xiaoxue, 2021. "Spatiotemporal complexity in a Leslie-Gower type predator-prey model near Turing-Hopf point," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    4. Mondal, Arnab & Upadhyay, Ranjit Kumar & Mondal, Argha & Sharma, Sanjeev Kumar, 2022. "Emergence of Turing patterns and dynamic visualization in excitable neuron model," Applied Mathematics and Computation, Elsevier, vol. 423(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mondal, Argha & Hens, Chittaranjan & Mondal, Arnab & Antonopoulos, Chris G., 2021. "Spatiotemporal instabilities and pattern formation in systems of diffusively coupled Izhikevich neurons," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Cencetti, Giulia & Battiston, Federico & Carletti, Timoteo & Fanelli, Duccio, 2020. "Generalized patterns from local and non local reactions," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Fateev, I. & Polezhaev, A., 2024. "Chimera states in a lattice of superdiffusively coupled neurons," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    4. Di Patti, Francesca & Fanelli, Duccio & Miele, Filippo & Carletti, Timoteo, 2017. "Benjamin–Feir instabilities on directed networks," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 8-16.
    5. Chen, Mengxin & Zheng, Qianqian, 2023. "Diffusion-driven instability of a predator–prey model with interval biological coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Ide, Yusuke & Izuhara, Hirofumi & Machida, Takuya, 2016. "Turing instability in reaction–diffusion models on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 331-347.
    7. Tah, Forwah Amstrong & Tabi, Conrad Bertrand & Kofane, Timoléon Crépin, 2021. "Pattern formation in the Fitzhugh–Nagumo neuron with diffusion relaxation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    8. He, Le & Su, Haijun, 2024. "Spatiotemporal patterns of reaction–diffusion systems with advection mechanisms on large-scale regular networks," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    9. Zheng, Qianqian & Shen, Jianwei & Pandey, Vikas & Guan, Linan & Guo, Yantao, 2023. "Turing instability in a network-organized epidemic model with delay," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    10. Riccardo Muolo & Joseph D. O’Brien & Timoteo Carletti & Malbor Asllani, 2024. "Persistence of chimera states and the challenge for synchronization in real-world networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(1), pages 1-16, January.
    11. Zheng, Qianqian & Shen, Jianwei & Xu, Yong & Pandey, Vikas & Guan, Linan, 2022. "Pattern mechanism in stochastic SIR networks with ER connectivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    12. Song, Mingrui & Gao, Shupeng & Liu, Chen & Bai, Yue & Zhang, Lei & Xie, Beilong & Chang, Lili, 2023. "Cross-diffusion induced Turing patterns on multiplex networks of a predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    13. Mondal, Arnab & Upadhyay, Ranjit Kumar & Mondal, Argha & Sharma, Sanjeev Kumar, 2022. "Emergence of Turing patterns and dynamic visualization in excitable neuron model," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    14. Rahimabadi, Arsalan & Benali, Habib, 2023. "Extended fractional-polynomial generalizations of diffusion and Fisher–KPP equations on directed networks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    15. Muolo, Riccardo & Gallo, Luca & Latora, Vito & Frasca, Mattia & Carletti, Timoteo, 2023. "Turing patterns in systems with high-order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    16. Muolo, Riccardo & Carletti, Timoteo & Bianconi, Ginestra, 2024. "The three way Dirac operator and dynamical Turing and Dirac induced patterns on nodes and links," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    17. Li, Xing & He, Runzi & Xi, Yuxia & Xue, Yakui & Wang, Yunfei & Luo, Xiaofeng, 2024. "The increasing strength of higher-order interactions may homogenize the distribution of infections in Turing patterns," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:381:y:2020:i:c:s0096300320302708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.