IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v415y2022ics0096300321008043.html
   My bibliography  Save this article

A rapid and powerful iterative method for computing inverses of sparse tensors with applications

Author

Listed:
  • Khosravi Dehdezi, Eisa
  • Karimi, Saeed

Abstract

This paper proposes an algorithm based on the Shultz iterative method and divided differences to find the roots of nonlinear equations. Using the new method, we present a rapid and powerful algorithm to compute an approximate inverse of an invertible tensor. Analysis of the convergence error shows that the convergence order of the method is a linear combination of the Fibonacci sequence and also is rapid and powerful in finding and keeping sparsity of the obtained approximate inverse of the sparse tensors. The algorithm is extended for computing the Moore-Penrose inverse of a tensor. As an application, we use the iterates obtained by the algorithm as a preconditioner for the tensorized Krylov subspace method, e.g., LSQR based tensor form to solve the multilinear system A★NX=B. Several examples are also provided to show the efficiency of the proposed method. Finally, some concluding remarks are given.

Suggested Citation

  • Khosravi Dehdezi, Eisa & Karimi, Saeed, 2022. "A rapid and powerful iterative method for computing inverses of sparse tensors with applications," Applied Mathematics and Computation, Elsevier, vol. 415(C).
  • Handle: RePEc:eee:apmaco:v:415:y:2022:i:c:s0096300321008043
    DOI: 10.1016/j.amc.2021.126720
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321008043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Baohua & Ma, Changfeng, 2020. "Global least squares methods based on tensor form to solve a class of generalized Sylvester tensor equations," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi, Zhaohui & Ning, Yingqiang & Xiao, Lin & Luo, Jiajie & Li, Xiaopeng, 2023. "Finite-time zeroing neural networks with novel activation function and variable parameter for solving time-varying Lyapunov tensor equation," Applied Mathematics and Computation, Elsevier, vol. 452(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Zhaohui & Ning, Yingqiang & Xiao, Lin & Luo, Jiajie & Li, Xiaopeng, 2023. "Finite-time zeroing neural networks with novel activation function and variable parameter for solving time-varying Lyapunov tensor equation," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    2. Eisa Khosravi Dehdezi, 2021. "Iterative Methods for Solving Sylvester Transpose Tensor Equation $$~\mathcal A\star _N\mathcal X\star _M\mathcal {B}+\mathcal {C}\star _M\mathcal X^T\star _N\mathcal {D}=\mathcal {E}$$ A ⋆ N X ⋆ M B ," SN Operations Research Forum, Springer, vol. 2(4), pages 1-21, December.
    3. Xiao, Lin & Li, Xiaopeng & Jia, Lei & Liu, Sai, 2022. "Improved finite-time solutions to time-varying Sylvester tensor equation via zeroing neural networks," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    4. Zhang, Xin-Fang & Wang, Qing-Wen, 2021. "Developing iterative algorithms to solve Sylvester tensor equations," Applied Mathematics and Computation, Elsevier, vol. 409(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:415:y:2022:i:c:s0096300321008043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.