IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v365y2020ics0096300319306915.html
   My bibliography  Save this article

A modified CG algorithm for solving generalized coupled Sylvester tensor equations

Author

Listed:
  • Lv, Changqing
  • Ma, Changfeng

Abstract

In this paper, a modified conjugate gradient (MCG) algorithm is proposed for solving generalized coupled Sylverster tensor equations. If the tensor equations are consistent, we show the solution can be obtained within finite steps in the absence of roundoff errors for any initial value. At last, some numerical examples are provided to illustrate the efficiency and validity of the proposed algorithm.

Suggested Citation

  • Lv, Changqing & Ma, Changfeng, 2020. "A modified CG algorithm for solving generalized coupled Sylvester tensor equations," Applied Mathematics and Computation, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:apmaco:v:365:y:2020:i:c:s0096300319306915
    DOI: 10.1016/j.amc.2019.124699
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319306915
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124699?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Guang-Xin & Chen, Qi-Xing & Yin, Feng, 2022. "Preconditioned TBiCOR and TCORS algorithms for solving the Sylvester tensor equation," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    2. Chen, Qi-Xing & Huang, Guang-Xin & Zhang, Ming-Yue, 2024. "Preconditioned BiCGSTAB and BiCRSTAB methods for solving the Sylvester tensor equation," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    3. Tao Li & Qing-Wen Wang & Xin-Fang Zhang, 2022. "A Modified Conjugate Residual Method and Nearest Kronecker Product Preconditioner for the Generalized Coupled Sylvester Tensor Equations," Mathematics, MDPI, vol. 10(10), pages 1-19, May.
    4. Zhang, Xin-Fang & Wang, Qing-Wen, 2021. "Developing iterative algorithms to solve Sylvester tensor equations," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    5. Xiao, Lin & Li, Xiaopeng & Jia, Lei & Liu, Sai, 2022. "Improved finite-time solutions to time-varying Sylvester tensor equation via zeroing neural networks," Applied Mathematics and Computation, Elsevier, vol. 416(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:365:y:2020:i:c:s0096300319306915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.