IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v409y2021ics0096300320305671.html
   My bibliography  Save this article

Using gradient directions to get global convergence of Newton-type methods

Author

Listed:
  • di Serafino, Daniela
  • Toraldo, Gerardo
  • Viola, Marco

Abstract

The renewed interest in Steepest Descent (SD) methods following the work of Barzilai and Borwein [2] has driven us to consider a globalization strategy based on SD, which is applicable to any line-search method. In particular, we combine Newton-type directions with scaled SD steps to have suitable descent directions. Scaling the SD directions with a suitable step length makes a significant difference with respect to similar globalization approaches, in terms of both theoretical features and computational behavior. We apply our strategy to Newton’s method and the BFGS method, with computational results that appear interesting compared with the results of well-established globalization strategies devised ad hoc for those methods.

Suggested Citation

  • di Serafino, Daniela & Toraldo, Gerardo & Viola, Marco, 2021. "Using gradient directions to get global convergence of Newton-type methods," Applied Mathematics and Computation, Elsevier, vol. 409(C).
  • Handle: RePEc:eee:apmaco:v:409:y:2021:i:c:s0096300320305671
    DOI: 10.1016/j.amc.2020.125612
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320305671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125612?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. di Serafino, Daniela & Ruggiero, Valeria & Toraldo, Gerardo & Zanni, Luca, 2018. "On the steplength selection in gradient methods for unconstrained optimization," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 176-195.
    2. Crisci, Serena & Ruggiero, Valeria & Zanni, Luca, 2019. "Steplength selection in gradient projection methods for box-constrained quadratic programs," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 312-327.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia Berra & Alessandro Torraca & Federico Benvenuto & Sara Sommariva, 2024. "Combined Newton-Gradient Method for Constrained Root-Finding in Chemical Reaction Networks," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 404-427, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Berra & Alessandro Torraca & Federico Benvenuto & Sara Sommariva, 2024. "Combined Newton-Gradient Method for Constrained Root-Finding in Chemical Reaction Networks," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 404-427, January.
    2. Roberto Andreani & Marcos Raydan, 2021. "Properties of the delayed weighted gradient method," Computational Optimization and Applications, Springer, vol. 78(1), pages 167-180, January.
    3. Serena Crisci & Federica Porta & Valeria Ruggiero & Luca Zanni, 2023. "Hybrid limited memory gradient projection methods for box-constrained optimization problems," Computational Optimization and Applications, Springer, vol. 84(1), pages 151-189, January.
    4. Giulia Ferrandi & Michiel E. Hochstenbach & Nataša Krejić, 2023. "A harmonic framework for stepsize selection in gradient methods," Computational Optimization and Applications, Springer, vol. 85(1), pages 75-106, May.
    5. Corsaro, Stefania & De Simone, Valentina & Marino, Zelda, 2021. "Split Bregman iteration for multi-period mean variance portfolio optimization," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    6. Yakui Huang & Yu-Hong Dai & Xin-Wei Liu & Hongchao Zhang, 2022. "On the acceleration of the Barzilai–Borwein method," Computational Optimization and Applications, Springer, vol. 81(3), pages 717-740, April.
    7. Crisci, Serena & Ruggiero, Valeria & Zanni, Luca, 2019. "Steplength selection in gradient projection methods for box-constrained quadratic programs," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 312-327.
    8. E. Loli Piccolomini & V. L. Coli & E. Morotti & L. Zanni, 2018. "Reconstruction of 3D X-ray CT images from reduced sampling by a scaled gradient projection algorithm," Computational Optimization and Applications, Springer, vol. 71(1), pages 171-191, September.
    9. Harry Fernando Oviedo Leon, 2019. "A delayed weighted gradient method for strictly convex quadratic minimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 729-746, December.
    10. Yu-Hong Dai & Yakui Huang & Xin-Wei Liu, 2019. "A family of spectral gradient methods for optimization," Computational Optimization and Applications, Springer, vol. 74(1), pages 43-65, September.
    11. Behzad Azmi & Karl Kunisch, 2020. "Analysis of the Barzilai-Borwein Step-Sizes for Problems in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 819-844, June.
    12. O. P. Ferreira & M. Lemes & L. F. Prudente, 2022. "On the inexact scaled gradient projection method," Computational Optimization and Applications, Springer, vol. 81(1), pages 91-125, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:409:y:2021:i:c:s0096300320305671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.