IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v408y2021ics009630032100432x.html
   My bibliography  Save this article

Asymptotic analysis of a two-phase Stefan problem in annulus: Application to outward solidification in phase change materials

Author

Listed:
  • Xu, Minghan
  • Akhtar, Saad
  • Zueter, Ahmad F.
  • Alzoubi, Mahmoud A.
  • Sushama, Laxmi
  • Sasmito, Agus P.

Abstract

Stefan problems provide one of the most fundamental frameworks to capture phase change processes. The problem in cylindrical coordinates can model outward solidification, which ensures the thermal design and operation associated with phase change materials (PCMs). However, this moving boundary problem is highly nonlinear in most circumstances. Exact solutions are restricted to certain domains and boundary conditions. It is therefore vital to develop approximate analytical solutions based on physically tangible assumptions, e.g., a small Stefan number. A great amount of work has been done in one-phase Stefan problems, where the initial state is at its fusion temperature, yet very few literature has considered two-phase problems particularly in cylindrical coordinates. This paper conducts an asymptotic analysis for a two-phase Stefan problem for outward solidification in a hollow cylinder, consisting of three temporal and four spatial scales. The results are compared with the enthalpy method that simulates a mushy region between two phases by numerical iterations, rather than a sharp interface in Stefan problems. After studying both mathematical models, the role of mushy-zone thickness in the enthalpy method is also unveiled. Moreover, a wide range of geometric ratios, thermophysical properties and Stefan numbers are selected from the literature to explore their effects on the developed model with regards to interface motion and temperature profile. It can be concluded that the asymptotic solution is capable of tracking the moving interface and evaluating the transient temperature for various geometric ratios and thermophysical properties in PCMs. The accuracy of this solution is found to be affected by Stefan number only, and the computational cost is much less compared with the enthalpy method and other numerical schemes.

Suggested Citation

  • Xu, Minghan & Akhtar, Saad & Zueter, Ahmad F. & Alzoubi, Mahmoud A. & Sushama, Laxmi & Sasmito, Agus P., 2021. "Asymptotic analysis of a two-phase Stefan problem in annulus: Application to outward solidification in phase change materials," Applied Mathematics and Computation, Elsevier, vol. 408(C).
  • Handle: RePEc:eee:apmaco:v:408:y:2021:i:c:s009630032100432x
    DOI: 10.1016/j.amc.2021.126343
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032100432X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Abhishek & Rajeev,, 2020. "A Stefan problem with moving phase change material, variable thermal conductivity and periodic boundary condition," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Jaafar, Mohamad Ali & Rousse, Daniel R. & Gibout, Stéphane & Bédécarrats, Jean-Pierre, 2017. "A review of dendritic growth during solidification: Mathematical modeling and numerical simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1064-1079.
    3. Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
    4. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    5. Bollati, J. & Semitiel, J. & Tarzia, D.A., 2018. "Heat balance integral methods applied to the one-phase Stefan problem with a convective boundary condition at the fixed face," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 1-19.
    6. Khalid, Muhammad Zeeshan & Zubair, Muhammad & Ali, Majid, 2019. "An analytical method for the solution of two phase Stefan problem in cylindrical geometry," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 295-308.
    7. Matthew Fong & Jundika Kurnia & Agus P. Sasmito, 2020. "Application of Phase Change Material-Based Thermal Capacitor in Double Tube Heat Exchanger—A Numerical Investigation," Energies, MDPI, vol. 13(17), pages 1-19, August.
    8. Moritz Faden & Andreas König-Haagen & Dieter Brüggemann, 2019. "An Optimum Enthalpy Approach for Melting and Solidification with Volume Change," Energies, MDPI, vol. 12(5), pages 1-21, March.
    9. Ribera, H. & Myers, T.G. & MacDevette, M.M., 2019. "Optimising the heat balance integral method in spherical and cylindrical Stefan problems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 216-231.
    10. Ceretani, Andrea N. & Salva, Natalia N. & Tarzia, Domingo A., 2018. "Approximation of the modified error function," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 607-617.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akhtar, Saad & Xu, Minghan & Mohit, Mohammaderfan & Sasmito, Agus P., 2023. "A comprehensive review of modeling water solidification for droplet freezing applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Tian, Yang & Liu, Xianglei & Zheng, Hangbin & Xu, Qiao & Zhu, Zhonghui & Luo, Qinyang & Song, Chao & Gao, Ke & Yao, Haichen & Dang, Chunzhuo & Xuan, Yimin, 2022. "Artificial mitochondrion for fast latent heat storage: Experimental study and lattice Boltzmann simulation," Energy, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukas Hegner & Stefan Krimmel & Rebecca Ravotti & Dominic Festini & Jörg Worlitschek & Anastasia Stamatiou, 2021. "Experimental Feasibility Study of a Direct Contact Latent Heat Storage Using an Ester as a Bio-Based Storage Material," Energies, MDPI, vol. 14(2), pages 1-26, January.
    2. Englmair, Gerald & Moser, Christoph & Furbo, Simon & Dannemand, Mark & Fan, Jianhua, 2018. "Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system," Applied Energy, Elsevier, vol. 221(C), pages 522-534.
    3. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    4. Mohammadreza Ebrahimnataj Tiji & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Abbas Ebrahimi & Rohollah Babaei Mahani & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Natural Convection Effect on Solidification Enhancement in a Multi-Tube Latent Heat Storage System: Effect of Tubes’ Arrangement," Energies, MDPI, vol. 14(22), pages 1-23, November.
    5. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    6. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    7. Akhtar, Saad & Xu, Minghan & Mohit, Mohammaderfan & Sasmito, Agus P., 2023. "A comprehensive review of modeling water solidification for droplet freezing applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    9. Taler, Dawid & Dzierwa, Piotr & Taler, Jan, 2020. "New method for determining the optimum fluid temperature when heating pressure thick-walled components with openings," Energy, Elsevier, vol. 200(C).
    10. Xu, Tianhao & Gunasekara, Saman Nimali & Chiu, Justin Ningwei & Palm, Björn & Sawalha, Samer, 2020. "Thermal behavior of a sodium acetate trihydrate-based PCM: T-history and full-scale tests," Applied Energy, Elsevier, vol. 261(C).
    11. Stamatiou, Anastasia & Obermeyer, Melissa & Fischer, Ludger J. & Schuetz, Philipp & Worlitschek, Jörg, 2017. "Investigation of unbranched, saturated, carboxylic esters as phase change materials," Renewable Energy, Elsevier, vol. 108(C), pages 401-409.
    12. Emhofer, Johann & Marx, Klemens & Sporr, Andreas & Barz, Tilman & Nitsch, Birgo & Wiesflecker, Michael & Pink, Werner, 2022. "Experimental demonstration of an air-source heat pump application using an integrated phase change material storage as a desuperheater for domestic hot water generation," Applied Energy, Elsevier, vol. 305(C).
    13. Huang, Sheng & Lu, Jun & Li, Yongcai, 2022. "Numerical study on the influence of inclination angle on the melting behaviour of metal foam-PCM latent heat storage units," Energy, Elsevier, vol. 239(PE).
    14. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Ramakrishnan, Sayanthan & Wang, Xiaoming & Sanjayan, Jay & Wilson, John, 2017. "Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach," Applied Energy, Elsevier, vol. 207(C), pages 654-664.
    16. Khan, Zakir & Khan, Zulfiqar Ahmad, 2017. "Experimental investigations of charging/melting cycles of paraffin in a novel shell and tube with longitudinal fins based heat storage design solution for domestic and industrial applications," Applied Energy, Elsevier, vol. 206(C), pages 1158-1168.
    17. Chen, Wei & Chen, Wei, 2020. "Analysis of heat transfer and flow in the solar chimney with the sieve-plate thermal storage beds packed with phase change capsules," Renewable Energy, Elsevier, vol. 157(C), pages 491-501.
    18. Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    19. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Cabeza, Luisa F., 2017. "Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings," Applied Energy, Elsevier, vol. 202(C), pages 420-434.
    20. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2018. "A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications," Energy, Elsevier, vol. 162(C), pages 1169-1182.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:408:y:2021:i:c:s009630032100432x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.