IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip2s0960077923009566.html
   My bibliography  Save this article

Improved stabilization condition of delayed T-S fuzzy systems via an extended quadratic function negative-determination lemma

Author

Listed:
  • Yang, Tianqing
  • Zou, Runmin
  • Liu, Fang
  • Liu, Cai
  • Sidorov, Denis

Abstract

This paper focuses on the stability and stabilization problems of continuous-time T-S fuzzy systems (TSFS) with variable delay. A new augmented Lyapunov–Krasovskii functional (LKF) is established by combining the negative quadratic term with the alterable delay-product-integral term. To further improve the results, an extended quadratic function negative-determination (QFND) lemma is proposed to deal with δ(t)-related quadratic function in the LKF derivative. Subsequently, based on the parallel distributed compensation (PDC) technique, a bounded delay correlation stabilization criterion is derived. Finally, the proposed methods are applied to a numerical example and an inverted pendulum system to verify their effectiveness and superiority.

Suggested Citation

  • Yang, Tianqing & Zou, Runmin & Liu, Fang & Liu, Cai & Sidorov, Denis, 2023. "Improved stabilization condition of delayed T-S fuzzy systems via an extended quadratic function negative-determination lemma," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p2:s0960077923009566
    DOI: 10.1016/j.chaos.2023.114055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923009566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vadivel, R. & Sabarathinam, S. & Wu, Yongbao & Chaisena, Kantapon & Gunasekaran, Nallappan, 2022. "New results on T–S fuzzy sampled-data stabilization for switched chaotic systems with its applications," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Lee, Tae H. & Park, Myeong Jin & Park, Ju H., 2021. "An improved stability criterion of neural networks with time-varying delays in the form of quadratic function using novel geometry-based conditions," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    3. Saravanakumar, Ramasamy & Datta, Rupak & Cao, Yang, 2022. "New insights on fuzzy sampled-data stabilization of delayed nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pessim, Paulo S.P. & Coutinho, Pedro Henrique Silva & Lacerda, Márcio J. & Palhares, Reinaldo Martínez, 2023. "Distributed event-triggered fuzzy control for nonlinear interconnected systems," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Qiyi & Zhang, Ning & Qi, Wenhai, 2023. "Finite-time control for discrete-time nonlinear Markov switching LPV systems with DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    2. Shuoting Wang & Kaibo Shi & Jin Yang, 2022. "Improved Stability Criteria for Delayed Neural Networks via a Relaxed Delay-Product-Type Lapunov–Krasovskii Functional," Mathematics, MDPI, vol. 10(15), pages 1-14, August.
    3. Arockia Samy, Stephen & Anbalagan, Pratap, 2023. "Disturbance observer-based integral sliding-mode control design for leader-following consensus of multi-agent systems and its application to car-following model," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Liu, Guobao & Chen, Xiangyong & Shen, Zhongyu & Liu, Yajuan & Jia, Xianglei, 2022. "Reachable set estimation for continuous delayed singularly perturbed systems with bounded disturbances," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    5. Wang, Jianjun & Liu, Wen & Fu, Shihua & Xia, Jianwei, 2022. "On robust set stability and set stabilization of probabilistic Boolean control networks," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    6. Xie, Xiangpeng & Shen, Xicheng & Peng, Chen, 2022. "Relaxed stabilization synthesis of discrete-time nonlinear systems with uplink data loss based on a novel online evaluation mechanism," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    7. Ma, Yajing & Li, Zhanjie & Xie, Xiangpeng & Yue, Dong, 2023. "Adaptive consensus of uncertain switched nonlinear multi-agent systems under sensor deception attacks," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    8. Xu, Tianbo & Zhu, Chunxia & Qi, Wenhai & Cheng, Jun & Shi, Kaibo & Sun, Liangliang, 2022. "Passive analysis and finite-time anti-disturbance control for semi-Markovian jump fuzzy systems with saturation and uncertainty," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    9. Nguyen, Khanh Hieu & Kim, Sung Hyun, 2024. "Improvement of sampled-data-based stabilization and dissipativity conditions for T–S fuzzy systems under network communication environment," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    10. Cai, Xiao & Shi, Kaibo & She, Kun & Zhong, Shouming & Kwon, Ohmin & Tang, Yiqian, 2022. "Voluntary defense strategy and quantized sample-data control for T-S fuzzy networked control systems with stochastic cyber-attacks and its application," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    11. Lee, S.H. & Park, M.J. & Kwon, O.M. & Choi, S.G., 2022. "Less conservative stability criteria for general neural networks through novel delay-dependent functional," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    12. Yang, Te & Wang, Zhen & Xia, Jianwei & Shen, Hao, 2023. "Sampled-data exponential synchronization of stochastic chaotic Lur’e delayed systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 44-57.
    13. Lin, Funing & Xue, Guangming & Qin, Bin & Li, Shenggang & Liu, Heng, 2023. "Event-triggered finite-time fuzzy control approach for fractional-order nonlinear chaotic systems with input delay," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    14. Tang, Tianfeng & Qin, Gang & Zhang, Bin & Cheng, Jun & Cao, Jinde, 2024. "Event-based asynchronous state estimation for Markov jump memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 473(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p2:s0960077923009566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.