IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v402y2021ics0096300321001806.html
   My bibliography  Save this article

Adaptive fault-tolerant output regulation of linear systems with unknown dynamics and actuator faults

Author

Listed:
  • Ma, Dazhong
  • Wang, Tianbiao
  • Zhang, Huaguang
  • Xie, Xiangpeng

Abstract

In this paper, the adaptive fault-tolerant output regulation for the system with unknown dynamics is considered. Firstly, a data-driven algorithm is proposed to identify the system dynamics by solving the Riccati equation. Due to unneeded to solve the optimal controller, the iterative process of the algorithm is reduced. Based on the identified model, an adaptive controller is designed to compensate for the actuator faults which include both outage and loss-of-effectiveness faults. Moreover, the internal model of the exosystem is embedded in the adaptive fault-tolerant controller which can stabilize the system whether the actuator faults hold or not. Finally, the numerical simulation result shows the effectiveness of the proposed controller.

Suggested Citation

  • Ma, Dazhong & Wang, Tianbiao & Zhang, Huaguang & Xie, Xiangpeng, 2021. "Adaptive fault-tolerant output regulation of linear systems with unknown dynamics and actuator faults," Applied Mathematics and Computation, Elsevier, vol. 402(C).
  • Handle: RePEc:eee:apmaco:v:402:y:2021:i:c:s0096300321001806
    DOI: 10.1016/j.amc.2021.126132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321001806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, Wakeel & Lin, Yan & Ullah Khan, Sarmad & Ullah, Nasim, 2018. "Quantized adaptive decentralized control for interconnected nonlinear systems with actuator faults," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 175-189.
    2. Wang, Yuanqing & Xu, Ning & Liu, Yajuan & Zhao, Xudong, 2021. "Adaptive fault-tolerant control for switched nonlinear systems based on command filter technique," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Xiangpeng & Shen, Xicheng & Peng, Chen, 2022. "Relaxed stabilization synthesis of discrete-time nonlinear systems with uplink data loss based on a novel online evaluation mechanism," Applied Mathematics and Computation, Elsevier, vol. 421(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jing & Sun, Wei & Su, Shun-Feng & Xia, Jianwei, 2022. "Neural-based adaptive control for nonlinear systems with quantized input and the output constraint," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    2. Ruixia Liu & Lei Xing & Hong Deng & Weichao Zhong, 2023. "Finite-Time Adaptive Fuzzy Control for Unmodeled Dynamical Systems with Actuator Faults," Mathematics, MDPI, vol. 11(9), pages 1-22, May.
    3. Liu, Shanlin & Niu, Ben & Zong, Guangdeng & Zhao, Xudong & Xu, Ning, 2022. "Adaptive fixed-time hierarchical sliding mode control for switched under-actuated systems with dead-zone constraints via event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    4. Xu, Bo & Liang, Yanjun & Li, Yuan-Xin & Hou, Zhongsheng, 2022. "Adaptive command filtered fixed-time control of nonlinear systems with input quantization," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    5. Zhou, Zepeng & Zhu, Fanglai & Xu, Dezhi & Guo, Shenghui & Zhao, Younan, 2022. "Attack resilient control for vehicle platoon system with full states constraint under actuator faulty scenario," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    6. Peng, Xiao & Wang, Yijing & Zuo, Zhiqiang, 2022. "Co-design of state-dependent switching law and control scheme for variable-order fractional nonlinear switched systems," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    7. Wu, Li-Bing & Wang, Heng & He, Xi-Qin & Zhang, Da-Qing, 2018. "Decentralized adaptive fuzzy tracking control for a class of uncertain large-scale systems with actuator nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 390-405.
    8. Yasser Falah Hassan & Mahmood Khalid Hadi Zarkani & Mohammed Jasim Alali & Haitham Daealhaq & Hicham Chaoui, 2024. "Guaranteed H∞ Performance of Switched Systems with State Delays: A Novel Low-Conservative Constrained Model Predictive Control Strategy," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
    9. Xu, Ning & Zhao, Xudong & Zong, Guangdeng & Wang, Yuanqing, 2021. "Adaptive control design for uncertain switched nonstrict-feedback nonlinear systems to achieve asymptotic tracking performance," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    10. Chen, Zhongyu & Niu, Ben & Zhao, Xudong & Zhang, Liang & Xu, Ning, 2021. "Model-Based adaptive event-Triggered control of nonlinear continuous-Time systems," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    11. Xu, Yao & Chu, Chenyin & Li, Wenxue, 2018. "Quantized feedback control scheme on coupled systems with time delay and distributed delay: A finite-time inner synchronization analysis," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 315-328.
    12. Hu, Yifan & Liu, Wenhui & Liu, Guobao, 2022. "Adaptive finite‐time event‐triggered control for uncertain nonlinearly parameterized systems with unknown control direction and actuator failures," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    13. Ma, Jiali & Park, Ju H. & Xu, Shengyuan & Cui, Guozeng & Yang, Zhichun, 2020. "Command-filter-based adaptive tracking control for nonlinear systems with unknown input quantization and mismatching disturbances," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    14. Cui, Di & Zou, Wencheng & Guo, Jian & Xiang, Zhengrong, 2022. "Neural network-based adaptive finite-time tracking control of switched nonlinear systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    15. Xiongfeng Deng & Yiqing Huang & Binzi Xu & Liang Tao, 2023. "Position and Attitude Tracking Finite-Time Adaptive Control for a VTOL Aircraft Using Global Fast Terminal Sliding Mode Control," Mathematics, MDPI, vol. 11(12), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:402:y:2021:i:c:s0096300321001806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.