IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i2p246-d1317640.html
   My bibliography  Save this article

Guaranteed H∞ Performance of Switched Systems with State Delays: A Novel Low-Conservative Constrained Model Predictive Control Strategy

Author

Listed:
  • Yasser Falah Hassan

    (College of Engineering, University of Kerbala, Karbala 56001, Iraq)

  • Mahmood Khalid Hadi Zarkani

    (College of Engineering, University of Kerbala, Karbala 56001, Iraq)

  • Mohammed Jasim Alali

    (College of Engineering, University of Kerbala, Karbala 56001, Iraq)

  • Haitham Daealhaq

    (College of Engineering, University of Kerbala, Karbala 56001, Iraq)

  • Hicham Chaoui

    (Faculty of Engineering and Design, Carleton University, Ottawa, ON K1S 5B6, Canada
    College of Engineering, Texas Tech University, Lubbock, TX 79409, USA)

Abstract

In this paper, for the first time, a simultaneous design of a model predictive control plan and persistent dwell-time switching signal utilizing the conventional multiple Lyapunov–Krasovskii functional is proposed for linear delayed switched systems that are affected by physical constraints and exogenous disturbances. The conventional multiple Lyapunov–Krasovskii functional with a ‘jump high’ condition is used as a step forward to reduce the strictness of constraints on controller design compared with the switched Lyapunov–Krasovskii functional. However, a dwell-time constraint is inflicted on the switching signal by the ‘jump-high’ condition. Therefore, to decrease the dwell-time limit, the persistent dwell-time structure is used and compared with other structures. Also, a new online framework is proposed to reduce the number of constraints on controller design at each time step. Moreover, for the first time, exogenous disturbances are considered in the procedure of MPC design for delayed switched systems, and non-weighted H∞ performance is ensured. The simulation outcome demonstrates the great performance of the suggested plan and its ability to asymptotically stabilize the switched system.

Suggested Citation

  • Yasser Falah Hassan & Mahmood Khalid Hadi Zarkani & Mohammed Jasim Alali & Haitham Daealhaq & Hicham Chaoui, 2024. "Guaranteed H∞ Performance of Switched Systems with State Delays: A Novel Low-Conservative Constrained Model Predictive Control Strategy," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:246-:d:1317640
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/2/246/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/2/246/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yuanqing & Xu, Ning & Liu, Yajuan & Zhao, Xudong, 2021. "Adaptive fault-tolerant control for switched nonlinear systems based on command filter technique," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruixia Liu & Lei Xing & Hong Deng & Weichao Zhong, 2023. "Finite-Time Adaptive Fuzzy Control for Unmodeled Dynamical Systems with Actuator Faults," Mathematics, MDPI, vol. 11(9), pages 1-22, May.
    2. Xu, Ning & Zhao, Xudong & Zong, Guangdeng & Wang, Yuanqing, 2021. "Adaptive control design for uncertain switched nonstrict-feedback nonlinear systems to achieve asymptotic tracking performance," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    3. Chen, Zhongyu & Niu, Ben & Zhao, Xudong & Zhang, Liang & Xu, Ning, 2021. "Model-Based adaptive event-Triggered control of nonlinear continuous-Time systems," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    4. Liu, Shanlin & Niu, Ben & Zong, Guangdeng & Zhao, Xudong & Xu, Ning, 2022. "Adaptive fixed-time hierarchical sliding mode control for switched under-actuated systems with dead-zone constraints via event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    5. Wu, Jing & Sun, Wei & Su, Shun-Feng & Xia, Jianwei, 2022. "Neural-based adaptive control for nonlinear systems with quantized input and the output constraint," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    6. Xu, Bo & Liang, Yanjun & Li, Yuan-Xin & Hou, Zhongsheng, 2022. "Adaptive command filtered fixed-time control of nonlinear systems with input quantization," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    7. Hu, Yifan & Liu, Wenhui & Liu, Guobao, 2022. "Adaptive finite‐time event‐triggered control for uncertain nonlinearly parameterized systems with unknown control direction and actuator failures," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    8. Zhou, Zepeng & Zhu, Fanglai & Xu, Dezhi & Guo, Shenghui & Zhao, Younan, 2022. "Attack resilient control for vehicle platoon system with full states constraint under actuator faulty scenario," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    9. Peng, Xiao & Wang, Yijing & Zuo, Zhiqiang, 2022. "Co-design of state-dependent switching law and control scheme for variable-order fractional nonlinear switched systems," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    10. Ma, Dazhong & Wang, Tianbiao & Zhang, Huaguang & Xie, Xiangpeng, 2021. "Adaptive fault-tolerant output regulation of linear systems with unknown dynamics and actuator faults," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    11. Cui, Di & Zou, Wencheng & Guo, Jian & Xiang, Zhengrong, 2022. "Neural network-based adaptive finite-time tracking control of switched nonlinear systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 428(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:246-:d:1317640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.