IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v366y2020ics0096300319307192.html
   My bibliography  Save this article

A high order numerical method and its convergence for time-fractional fourth order partial differential equations

Author

Listed:
  • Roul, Pradip
  • Prasad Goura, V.M.K.

Abstract

This paper is concerned with design and analysis of a high order numerical approach based on a uniform mesh to approximate the solution of time-fractional fourth order partial differential equations. In this approach, we first approximate the time-fractional derivative appearing in the governing equation by means of Caputo’s definition and then construct a sextic B-spline collocation method for solving the resulting equation. It is proved that the present method is unconditionally stable. Convergence analysis of the method is discussed. We prove that the method is (2−α)th order convergence with respect to time variable and fourth order convergence with respect to space variable. Three test problems are considered to demonstrate the applicability and efficiency of the new method. It is shown that the rate of convergence predicted theoretically is the same as that obtained experimentally. Numerical results have been compared with those reported previously in literature. It is shown that our method yields more accurate results when compared to the existing methods.

Suggested Citation

  • Roul, Pradip & Prasad Goura, V.M.K., 2020. "A high order numerical method and its convergence for time-fractional fourth order partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 366(C).
  • Handle: RePEc:eee:apmaco:v:366:y:2020:i:c:s0096300319307192
    DOI: 10.1016/j.amc.2019.124727
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319307192
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goura, V.M.K. Prasad & Roul, Pradip, 2019. "Erratum to: B-spline collocation methods and their convergence for a class of nonlinear derivative dependent singular boundary value problems," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 198-201.
    2. Roul, Pradip & Madduri, Harshita & Kassner, Klaus, 2019. "A sixth-order numerical method for a strongly nonlinear singular boundary value problem governing electrohydrodynamic flow in a circular cylindrical conduit," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 416-433.
    3. Al-Smadi, Mohammed & Arqub, Omar Abu, 2019. "Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 280-294.
    4. Roul, Pradip & Prasad Goura, V.M.K., 2019. "B-spline collocation methods and their convergence for a class of nonlinear derivative dependent singular boundary value problems," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 428-450.
    5. S. C. S. Rao & M. Kumar, 2007. "B-Spline Collocation Method for Nonlinear Singularly-Perturbed Two-Point Boundary-Value Problems," Journal of Optimization Theory and Applications, Springer, vol. 134(1), pages 91-105, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Li & Fan, Zhenbin & Li, Gang & Piskarev, Sergey, 2021. "Discrete almost maximal regularity and stability for fractional differential equations in Lp([0, 1], Ω)," Applied Mathematics and Computation, Elsevier, vol. 389(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roul, Pradip & Prasad Goura, V.M.K., 2022. "A superconvergent B-spline technique for second order nonlinear boundary value problems," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    2. Amit K. Verma & Biswajit Pandit & Lajja Verma & Ravi P. Agarwal, 2020. "A Review on a Class of Second Order Nonlinear Singular BVPs," Mathematics, MDPI, vol. 8(7), pages 1-50, June.
    3. Roul, Pradip & Madduri, Harshita & Kassner, Klaus, 2019. "A sixth-order numerical method for a strongly nonlinear singular boundary value problem governing electrohydrodynamic flow in a circular cylindrical conduit," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 416-433.
    4. Xie, Qichang & Sun, Qiankun, 2019. "Computation and application of robust data-driven bandwidth selection for gradient function estimation," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 274-293.
    5. Roul, Pradip & Prasad Goura, V.M.K. & Agarwal, Ravi, 2019. "A compact finite difference method for a general class of nonlinear singular boundary value problems with Neumann and Robin boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 283-304.
    6. Swati, & Singh, Mandeep & Singh, Karanjeet, 2023. "An efficient technique based on higher order Haar wavelet method for Lane–Emden equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 21-39.
    7. Ramos, Higinio & Rufai, Mufutau Ajani, 2022. "An adaptive pair of one-step hybrid block Nyström methods for singular initial-value problems of Lane–Emden–Fowler type," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 497-508.
    8. S. C. S. Rao & S. Kumar & M. Kumar, 2011. "Uniform Global Convergence of a Hybrid Scheme for Singularly Perturbed Reaction–Diffusion Systems," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 338-352, November.
    9. Yüzbaşı, Şuayip & Yıldırım, Gamze, 2022. "A collocation method to solve the parabolic-type partial integro-differential equations via Pell–Lucas polynomials," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    10. Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2022. "Approximate Solution of Nonlinear Time-Fractional PDEs by Laplace Residual Power Series Method," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
    11. Majee, Suvankar & Jana, Soovoojeet & Das, Dhiraj Kumar & Kar, T.K., 2022. "Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    12. Arqub, Omar Abu & Maayah, Banan, 2019. "Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 394-402.
    13. S. C. S. Rao & S. Kumar & M. Kumar, 2010. "A Parameter-Uniform B-Spline Collocation Method for Singularly Perturbed Semilinear Reaction-Diffusion Problems," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 795-809, September.
    14. Djennadi, Smina & Shawagfeh, Nabil & Abu Arqub, Omar, 2021. "A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    15. Hasan, Shatha & El-Ajou, Ahmad & Hadid, Samir & Al-Smadi, Mohammed & Momani, Shaher, 2020. "Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    16. Qureshi, Sania & Memon, Zaib-un-Nisa, 2020. "Monotonically decreasing behavior of measles epidemic well captured by Atangana–Baleanu–Caputo fractional operator under real measles data of Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    17. Al-Smadi, Mohammed & Arqub, Omar Abu & Zeidan, Dia, 2021. "Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    18. Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2021. "Adaptation of Residual-Error Series Algorithm to Handle Fractional System of Partial Differential Equations," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
    19. Hasan, Shatha & Al-Smadi, Mohammed & El-Ajou, Ahmad & Momani, Shaher & Hadid, Samir & Al-Zhour, Zeyad, 2021. "Numerical approach in the Hilbert space to solve a fuzzy Atangana-Baleanu fractional hybrid system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    20. Qureshi, Sania & Aziz, Shaheen, 2020. "Fractional modeling for a chemical kinetic reaction in a batch reactor via nonlocal operator with power law kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:366:y:2020:i:c:s0096300319307192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.