IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v341y2019icp428-450.html
   My bibliography  Save this article

B-spline collocation methods and their convergence for a class of nonlinear derivative dependent singular boundary value problems

Author

Listed:
  • Roul, Pradip
  • Prasad Goura, V.M.K.

Abstract

This paper is concerned with the construction and convergence analysis of two B-spline collocation methods for a class of nonlinear derivative dependent singular boundary value problems (DDSBVP). The first method is based on uniform mesh, while the second method is based on non-uniform mesh. For the second method, we use a grading function to construct the non-uniform grid. We prove that the method based on uniform mesh is of second-order accuracy and the method based on non-uniform mesh is of fourth-order accuracy. Three nonlinear examples with derivative dependent source functions are considered to verify the performance and theoretical rate of convergence of present methods. Moreover, we consider some special cases of the problem under consideration in order to compare our methods with other existing methods. It is shown that our second method based on cubic B-spline basis functions has the same order of convergence as quartic B-spline collocation method [1]. Moreover, our methods yield more accurate results and are computationally attractive than the methods developed in [1–8]. The proposed methods are applied on three real-life problems, the first problem describes the distribution of radial stress on a rotationally shallow membrane cap, the second problem arises in the study of thermal explosion in cylindrical vessel and the third problem arises in astronomy.

Suggested Citation

  • Roul, Pradip & Prasad Goura, V.M.K., 2019. "B-spline collocation methods and their convergence for a class of nonlinear derivative dependent singular boundary value problems," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 428-450.
  • Handle: RePEc:eee:apmaco:v:341:y:2019:i:c:p:428-450
    DOI: 10.1016/j.amc.2018.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318307835
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yisheng Lai & Weiping Du & Renhong Wang, 2013. "The Viro Method for Construction of Piecewise Algebraic Hypersurfaces," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-7, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roul, Pradip & Madduri, Harshita & Kassner, Klaus, 2019. "A sixth-order numerical method for a strongly nonlinear singular boundary value problem governing electrohydrodynamic flow in a circular cylindrical conduit," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 416-433.
    2. Xie, Qichang & Sun, Qiankun, 2019. "Computation and application of robust data-driven bandwidth selection for gradient function estimation," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 274-293.
    3. Roul, Pradip & Prasad Goura, V.M.K., 2022. "A superconvergent B-spline technique for second order nonlinear boundary value problems," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    4. Goura, V.M.K. Prasad & Roul, Pradip, 2019. "Erratum to: B-spline collocation methods and their convergence for a class of nonlinear derivative dependent singular boundary value problems," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 198-201.
    5. Roul, Pradip & Prasad Goura, V.M.K., 2020. "A high order numerical method and its convergence for time-fractional fourth order partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    6. Shabanam Kumari & Arvind Kumar Singh & Utsav Gupta, 2024. "Collocation Technique Based on Chebyshev Polynomials to Solve Emden–Fowler-Type Singular Boundary Value Problems with Derivative Dependence," Mathematics, MDPI, vol. 12(4), pages 1-16, February.
    7. Roul, Pradip & Prasad Goura, V.M.K. & Agarwal, Ravi, 2019. "A compact finite difference method for a general class of nonlinear singular boundary value problems with Neumann and Robin boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 283-304.
    8. Amit K. Verma & Biswajit Pandit & Lajja Verma & Ravi P. Agarwal, 2020. "A Review on a Class of Second Order Nonlinear Singular BVPs," Mathematics, MDPI, vol. 8(7), pages 1-50, June.
    9. Ramos, Higinio & Rufai, Mufutau Ajani, 2022. "An adaptive pair of one-step hybrid block Nyström methods for singular initial-value problems of Lane–Emden–Fowler type," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 497-508.
    10. Swati, & Singh, Mandeep & Singh, Karanjeet, 2023. "An efficient technique based on higher order Haar wavelet method for Lane–Emden equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 21-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:341:y:2019:i:c:p:428-450. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.