IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v362y2006i1p139-145.html
   My bibliography  Save this article

Parallel performance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger's equation

Author

Listed:
  • Velivelli, A.C.
  • Bryden, K.M.

Abstract

Lattice Boltzmann methods are gaining recognition in the field of computational fluid dynamics due to their computational efficiency. In order to quantify the computational efficiency and accuracy of the lattice Boltzmann method, it is compared with efficient traditional finite difference methods such as the alternating direction implicit scheme. The lattice Boltzmann algorithm implemented in previous studies does not approach peak performance for simulations where the data involved in computation per time step is more than the cache size. Due to this, data is obtained from the main memory and this access is much slower than access to cache memory. Using a cache-optimized lattice Boltzmann algorithm, this paper takes into account the full computational strength of the lattice Boltzmann method. The com parison is performed on both a single processor and multiple processors.

Suggested Citation

  • Velivelli, A.C. & Bryden, K.M., 2006. "Parallel performance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger's equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(1), pages 139-145.
  • Handle: RePEc:eee:phsmap:v:362:y:2006:i:1:p:139-145
    DOI: 10.1016/j.physa.2005.09.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105009635
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.09.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Rui & Sun, Dongke & Shi, Baochang & Chai, Zhenhua, 2019. "Lattice Boltzmann model for time sub-diffusion equation in Caputo sense," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 80-90.
    2. Zhang, Jianying & Yan, Guangwu, 2008. "Lattice Boltzmann method for one and two-dimensional Burgers equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4771-4786.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:362:y:2006:i:1:p:139-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.