IDEAS home Printed from https://ideas.repec.org/a/wly/apsmda/v11y1995i1p59-75.html
   My bibliography  Save this article

Analytic solution and estimation of parameters on a stochastic exponential model for a technological diffusion process

Author

Listed:
  • A. Katsamaki
  • C. H. Skiadas

Abstract

In this paper we examine the behaviour of a stochastic model that describes a technological diffusion process (continuously increasing process). Furthermore we obtain a solution for the proposed model through the estimation of the volatility using three different approximations. The adjustment of real data to the final stochastic model confirms its ability of describing and forecasting real cases.

Suggested Citation

  • A. Katsamaki & C. H. Skiadas, 1995. "Analytic solution and estimation of parameters on a stochastic exponential model for a technological diffusion process," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 11(1), pages 59-75, March.
  • Handle: RePEc:wly:apsmda:v:11:y:1995:i:1:p:59-75
    DOI: 10.1002/asm.3150110108
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asm.3150110108
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asm.3150110108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. H. Skiadas & A. N. Giovanis, 1997. "A stochastic Bass innovation diffusion model for studying the growth of electricity consumption in Greece," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 13(2), pages 85-101, June.
    2. Pramesti Getut, 2023. "Parameter least-squares estimation for time-inhomogeneous Ornstein–Uhlenbeck process," Monte Carlo Methods and Applications, De Gruyter, vol. 29(1), pages 1-32, March.
    3. Ahmed Nafidi & Meriem Bahij & Ramón Gutiérrez-Sánchez & Boujemâa Achchab, 2020. "Two-Parameter Stochastic Weibull Diffusion Model: Statistical Inference and Application to Real Modeling Example," Mathematics, MDPI, vol. 8(2), pages 1-11, January.
    4. Eva María Ramos-Ábalos & Ramón Gutiérrez-Sánchez & Ahmed Nafidi, 2020. "Powers of the Stochastic Gompertz and Lognormal Diffusion Processes, Statistical Inference and Simulation," Mathematics, MDPI, vol. 8(4), pages 1-13, April.
    5. Gutiérrez, R. & Gutiérrez-Sánchez, R. & Nafidi, A., 2009. "The trend of the total stock of the private car-petrol in Spain: Stochastic modelling using a new gamma diffusion process," Applied Energy, Elsevier, vol. 86(1), pages 18-24, January.
    6. Gutiérrez, R. & Nafidi, A. & Gutiérrez Sánchez, R., 2005. "Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model," Applied Energy, Elsevier, vol. 80(2), pages 115-124, February.
    7. R. Gutiérrez & R. Gutiérrez‐Sánchez & A. Nafidi, 2009. "Modelling and forecasting vehicle stocks using the trends of stochastic Gompertz diffusion models: The case of Spain," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 385-405, May.
    8. Nafidi, Ahmed & El Azri, Abdenbi, 2021. "A stochastic diffusion process based on the Lundqvist–Korf growth: Computational aspects and simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 25-38.
    9. Ahmed Nafidi & Abdenbi El Azri & Ramón Gutiérrez-Sánchez, 2023. "A Stochastic Schumacher Diffusion Process: Probability Characteristics Computation and Statistical Analysis," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-15, June.
    10. Nafidi, A. & Bahij, M. & Achchab, B. & Gutiérrez-Sanchez, R., 2019. "The stochastic Weibull diffusion process: Computational aspects and simulation," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 575-587.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmda:v:11:y:1995:i:1:p:59-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-0747 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.