IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v346y2019icp633-648.html
   My bibliography  Save this article

Stability and convergence analysis of the quadratic spline collocation method for time-dependent fractional diffusion equations

Author

Listed:
  • Liu, Jun
  • Fu, Hongfei
  • Chai, Xiaochao
  • Sun, Yanan
  • Guo, Hui

Abstract

A quadratic spline collocation method combined with the Crank–Nicolson time discretization is proposed for time-dependent two-sided fractional diffusion equations. By carefully analyzing the mathematical properties of the coefficient matrix, the new scheme is proved to be unconditionally stable in the sense of discrete L2-norm for α ∈ [α*, 2), where α is the order of the space-fractional derivative of the fractional diffusion equation, and α* ≈ 1.2576 (see Lemma 3.1). Furthermore, the fractional-order spline interpolation error over the collocation points is studied, and subsequently we show that the spline collocation solution of the fractional diffusion equation converges to the exact one with order O(h3−α+τ2) under the discrete L2-norm, where τ and h are the temporal and spatial step sizes, respectively. Finally, numerical experiments are given to verify the theoretical results.

Suggested Citation

  • Liu, Jun & Fu, Hongfei & Chai, Xiaochao & Sun, Yanan & Guo, Hui, 2019. "Stability and convergence analysis of the quadratic spline collocation method for time-dependent fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 633-648.
  • Handle: RePEc:eee:apmaco:v:346:y:2019:i:c:p:633-648
    DOI: 10.1016/j.amc.2018.10.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318309123
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.10.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    2. Scalas, Enrico & Gorenflo, Rudolf & Mainardi, Francesco, 2000. "Fractional calculus and continuous-time finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 376-384.
    3. Sayevand, K. & Arjang, F., 2016. "Finite volume element method and its stability analysis for analyzing the behavior of sub-diffusion problems," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 224-239.
    4. Chen, S. & Liu, F. & Jiang, X. & Turner, I. & Anh, V., 2015. "A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 591-601.
    5. Feng, L.B. & Zhuang, P. & Liu, F. & Turner, I., 2015. "Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 52-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jun & Fu, Hongfei & Zhang, Jiansong, 2020. "A QSC method for fractional subdiffusion equations with fractional boundary conditions and its application in parameters identification," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 153-174.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jingyuan, 2018. "A stable explicitly solvable numerical method for the Riesz fractional advection–dispersion equations," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 209-227.
    2. Marseguerra, Marzio & Zoia, Andrea, 2008. "Pre-asymptotic corrections to fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2668-2674.
    3. Zheng, Guang-Hui & Zhang, Quan-Guo, 2018. "Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 148(C), pages 37-47.
    4. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    5. Fan Yang & Ping Fan & Xiao-Xiao Li & Xin-Yi Ma, 2019. "Fourier Truncation Regularization Method for a Time-Fractional Backward Diffusion Problem with a Nonlinear Source," Mathematics, MDPI, vol. 7(9), pages 1-13, September.
    6. Ren, Fei & Gu, Gao-Feng & Zhou, Wei-Xing, 2009. "Scaling and memory in the return intervals of realized volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4787-4796.
    7. Hajipour, Ahamad & Hajipour, Mojtaba & Baleanu, Dumitru, 2018. "On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 139-153.
    8. Álvaro Cartea & Thilo Meyer-Brandis, 2010. "How Duration Between Trades of Underlying Securities Affects Option Prices," Review of Finance, European Finance Association, vol. 14(4), pages 749-785.
    9. Schumer, Rina & Baeumer, Boris & Meerschaert, Mark M., 2011. "Extremal behavior of a coupled continuous time random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 505-511.
    10. Saberi Zafarghandi, Fahimeh & Mohammadi, Maryam & Babolian, Esmail & Javadi, Shahnam, 2019. "Radial basis functions method for solving the fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 224-246.
    11. Langlands, T.A.M., 2006. "Solution of a modified fractional diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 136-144.
    12. G. Fern'andez-Anaya & L. A. Quezada-T'ellez & B. Nu~nez-Zavala & D. Brun-Battistini, 2019. "Katugampola Generalized Conformal Derivative Approach to Inada Conditions and Solow-Swan Economic Growth Model," Papers 1907.00130, arXiv.org.
    13. Ya Qin & Adnan Khan & Izaz Ali & Maysaa Al Qurashi & Hassan Khan & Rasool Shah & Dumitru Baleanu, 2020. "An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems," Energies, MDPI, vol. 13(11), pages 1-14, May.
    14. Marcin Wątorek & Jarosław Kwapień & Stanisław Drożdż, 2022. "Multifractal Cross-Correlations of Bitcoin and Ether Trading Characteristics in the Post-COVID-19 Time," Future Internet, MDPI, vol. 14(7), pages 1-15, July.
    15. Scalas, Enrico & Gallegati, Mauro & Guerci, Eric & Mas, David & Tedeschi, Alessandra, 2006. "Growth and allocation of resources in economics: The agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 86-90.
    16. Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.
    17. D’Amico, Guglielmo & Janssen, Jacques & Manca, Raimondo, 2009. "European and American options: The semi-Markov case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3181-3194.
    18. Jorge E. Macías-Díaz, 2019. "Numerically Efficient Methods for Variational Fractional Wave Equations: An Explicit Four-Step Scheme," Mathematics, MDPI, vol. 7(11), pages 1-27, November.
    19. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    20. Hosseiny, Ali & Gallegati, Mauro, 2017. "Role of intensive and extensive variables in a soup of firms in economy to address long run prices and aggregate data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 51-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:346:y:2019:i:c:p:633-648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.