IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v290y2016icp224-239.html
   My bibliography  Save this article

Finite volume element method and its stability analysis for analyzing the behavior of sub-diffusion problems

Author

Listed:
  • Sayevand, K.
  • Arjang, F.

Abstract

In this paper, we analyze the spatially semi-discrete piecewise linear finite volume element method for the time fractional sub-diffusion problem in two dimensions, and give an approximate solution of this problem. At first, we introduce bilinear finite volume element method with interpolated coefficients and derive some error estimates between exact solution and numerical solution in both finite element and finite volume element methods. Furthermore, we use the standard finite element Ritz projection and also the elliptic projection defined by the bilinear form associated with the variational formulation of the finite volume element method. Finally, some numerical examples are included to illustrate the effectiveness of the new technique.

Suggested Citation

  • Sayevand, K. & Arjang, F., 2016. "Finite volume element method and its stability analysis for analyzing the behavior of sub-diffusion problems," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 224-239.
  • Handle: RePEc:eee:apmaco:v:290:y:2016:i:c:p:224-239
    DOI: 10.1016/j.amc.2016.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316303794
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Zhao & Zhichao Fang & Hong Li & Yang Liu, 2020. "A Crank–Nicolson Finite Volume Element Method for Time Fractional Sobolev Equations on Triangular Grids," Mathematics, MDPI, vol. 8(9), pages 1-17, September.
    2. Liu, Jun & Fu, Hongfei & Zhang, Jiansong, 2020. "A QSC method for fractional subdiffusion equations with fractional boundary conditions and its application in parameters identification," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 153-174.
    3. Liu, Jun & Fu, Hongfei & Chai, Xiaochao & Sun, Yanan & Guo, Hui, 2019. "Stability and convergence analysis of the quadratic spline collocation method for time-dependent fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 633-648.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:290:y:2016:i:c:p:224-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.