IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v341y2019icp160-173.html
   My bibliography  Save this article

Impulsive continuous Runge–Kutta methods for impulsive delay differential equations

Author

Listed:
  • Zhang, Gui-Lai
  • Song, Ming-Hui

Abstract

The classical continuous Runge–Kutta methods are widely applied to compute the numerical solutions of delay differential equations without impulsive perturbations. However, the classical continuous Runge–Kutta methods cannot be applied directly to impulsive delay differential equations, because the exact solutions of the impulsive delay differential equations are not continuous. In this paper, impulsive continuous Runge–Kutta methods are constructed for impulsive delay differential equations with the variable delay based on the theory of continuous Runge–Kutta methods, convergence of the constructed numerical methods is studied and some numerical examples are given to confirm the theoretical results.

Suggested Citation

  • Zhang, Gui-Lai & Song, Ming-Hui, 2019. "Impulsive continuous Runge–Kutta methods for impulsive delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 160-173.
  • Handle: RePEc:eee:apmaco:v:341:y:2019:i:c:p:160-173
    DOI: 10.1016/j.amc.2018.08.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318307331
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.08.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. L. Zhang & M. H. Song & M. Z. Liu, 2012. "Asymptotic Stability of a Class of Impulsive Delay Differential Equations," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-9, October.
    2. Bellen, Alfredo & Zennaro, Marino, 2003. "Numerical Methods for Delay Differential Equations," OUP Catalogue, Oxford University Press, number 9780198506546.
    3. Zhang, G.L. & Song, Minghui & Liu, M.Z., 2015. "Asymptotical stability of the exact solutions and the numerical solutions for a class of impulsive differential equations," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 12-21.
    4. Zhang, Gui-Lai, 2017. "High order Runge–Kutta methods for impulsive delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 12-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gui-Lai Zhang & Chao Liu, 2024. "Two Schemes of Impulsive Runge–Kutta Methods for Linear Differential Equations with Delayed Impulses," Mathematics, MDPI, vol. 12(13), pages 1-17, July.
    2. Zhang, Gui-Lai, 2022. "Convergence, consistency and zero stability of impulsive one-step numerical methods," Applied Mathematics and Computation, Elsevier, vol. 423(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gui-Lai Zhang & Zhi-Yong Zhu & Yu-Chen Wang & Chao Liu, 2024. "Impulsive Discrete Runge–Kutta Methods and Impulsive Continuous Runge–Kutta Methods for Nonlinear Differential Equations with Delayed Impulses," Mathematics, MDPI, vol. 12(19), pages 1-30, September.
    2. Rengamannar, Kaviya & Balakrishnan, Ganesh Priya & Palanisamy, Muthukumar & Niezabitowski, Michal, 2020. "Exponential stability of non-linear stochastic delay differential system with generalized delay-dependent impulsive points," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    3. Tan, Zengqiang & Zhang, Chengjian, 2022. "Numerical approximation to semi-linear stiff neutral equations via implicit–explicit general linear methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 68-87.
    4. Eriqat, Tareq & El-Ajou, Ahmad & Oqielat, Moa'ath N. & Al-Zhour, Zeyad & Momani, Shaher, 2020. "A New Attractive Analytic Approach for Solutions of Linear and Nonlinear Neutral Fractional Pantograph Equations," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Qin, Hongyu & Zhang, Qifeng & Wan, Shaohua, 2019. "The continuous Galerkin finite element methods for linear neutral delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 76-85.
    6. Qin, Tingting & Zhang, Chengjian, 2015. "Stable solutions of one-leg methods for a class of nonlinear functional-integro-differential equations," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 47-57.
    7. Deng, Shuning & Ji, Jinchen & Wen, Guilin & Yin, Shan, 2024. "Global dynamics of a hexagonal governor system with two time delays in the parameter and state spaces," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    8. Wang, Qi, 2015. "Numerical oscillation of neutral logistic delay differential equation," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 49-59.
    9. Posch, Olaf & Trimborn, Timo, 2013. "Numerical solution of dynamic equilibrium models under Poisson uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2602-2622.
    10. Xu, Y. & Zhao, J.J., 2008. "Stability of Runge–Kutta methods for neutral delay-integro-differential-algebraic system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 571-583.
    11. Amat, Sergio & José Legaz, M. & Pedregal, Pablo, 2015. "A variable step-size implementation of a variational method for stiff differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 118(C), pages 49-57.
    12. Cheng, Xue & Chen, Zhong & Zhang, Qingpu, 2015. "An approximate solution for a neutral functional–differential equation with proportional delays," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 27-34.
    13. Zhang, Chengjian & Chen, Hao, 2010. "Asymptotic stability of block boundary value methods for delay differential-algebraic equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(1), pages 100-108.
    14. Zhang, Gui-Lai, 2017. "High order Runge–Kutta methods for impulsive delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 12-23.
    15. Liu, X. & Zeng, Y.M., 2019. "Analytic and numerical stability of delay differential equations with variable impulses," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 293-304.
    16. García, M.A. & Castro, M.A. & Martín, J.A. & Rodríguez, F., 2018. "Exact and nonstandard numerical schemes for linear delay differential models," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 337-345.
    17. Zhan, Rui & Fang, Jinwei, 2024. "Stability analysis of explicit exponential Rosenbrock methods for stiff differential equations with constant delay," Applied Mathematics and Computation, Elsevier, vol. 482(C).
    18. M. Motawi Khashan & Rohul Amin & Muhammed I. Syam, 2019. "A New Algorithm for Fractional Riccati Type Differential Equations by Using Haar Wavelet," Mathematics, MDPI, vol. 7(6), pages 1-12, June.
    19. Olaf Posch & Timo Trimborn, 2010. "Numerical solution of continuous-time DSGE models under Poisson uncertainty," Economics Working Papers 2010-08, Department of Economics and Business Economics, Aarhus University.
    20. Tan, Zengqiang & Zhang, Chengjian, 2018. "Implicit-explicit one-leg methods for nonlinear stiff neutral equations," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 196-210.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:341:y:2019:i:c:p:160-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.