Impulsive Discrete Runge–Kutta Methods and Impulsive Continuous Runge–Kutta Methods for Nonlinear Differential Equations with Delayed Impulses
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhang, G.L. & Song, M.H., 2015. "Asymptotical stability of Runge–Kutta methods for advanced linear impulsive differential equations with piecewise constant arguments," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 831-837.
- Gui-Lai Zhang & Chao Liu, 2024. "Two Schemes of Impulsive Runge–Kutta Methods for Linear Differential Equations with Delayed Impulses," Mathematics, MDPI, vol. 12(13), pages 1-17, July.
- Bellen, Alfredo & Zennaro, Marino, 2003. "Numerical Methods for Delay Differential Equations," OUP Catalogue, Oxford University Press, number 9780198506546.
- Zhang, G.L. & Song, Minghui & Liu, M.Z., 2015. "Asymptotical stability of the exact solutions and the numerical solutions for a class of impulsive differential equations," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 12-21.
- Zhang, Gui-Lai, 2022. "Convergence, consistency and zero stability of impulsive one-step numerical methods," Applied Mathematics and Computation, Elsevier, vol. 423(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gui-Lai Zhang & Chao Liu, 2024. "Two Schemes of Impulsive Runge–Kutta Methods for Linear Differential Equations with Delayed Impulses," Mathematics, MDPI, vol. 12(13), pages 1-17, July.
- Zhang, Gui-Lai & Song, Ming-Hui, 2019. "Impulsive continuous Runge–Kutta methods for impulsive delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 160-173.
- Tan, Zengqiang & Zhang, Chengjian, 2022. "Numerical approximation to semi-linear stiff neutral equations via implicit–explicit general linear methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 68-87.
- Eriqat, Tareq & El-Ajou, Ahmad & Oqielat, Moa'ath N. & Al-Zhour, Zeyad & Momani, Shaher, 2020. "A New Attractive Analytic Approach for Solutions of Linear and Nonlinear Neutral Fractional Pantograph Equations," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
- Qin, Hongyu & Zhang, Qifeng & Wan, Shaohua, 2019. "The continuous Galerkin finite element methods for linear neutral delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 76-85.
- Qin, Tingting & Zhang, Chengjian, 2015. "Stable solutions of one-leg methods for a class of nonlinear functional-integro-differential equations," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 47-57.
- Wang, Qi, 2015. "Numerical oscillation of neutral logistic delay differential equation," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 49-59.
- Posch, Olaf & Trimborn, Timo, 2013.
"Numerical solution of dynamic equilibrium models under Poisson uncertainty,"
Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2602-2622.
- Olaf Posch & Timo Trimborn, 2011. "Numerical Solution of Dynamic Equilibrium Models under Poisson Uncertainty," DEGIT Conference Papers c016_044, DEGIT, Dynamics, Economic Growth, and International Trade.
- Olaf Posch & Timo Trimborn, 2011. "Numerical Solution of Dynamic Equilibrium Models under Poisson Uncertainty," CESifo Working Paper Series 3431, CESifo.
- Xu, Y. & Zhao, J.J., 2008. "Stability of Runge–Kutta methods for neutral delay-integro-differential-algebraic system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 571-583.
- Amat, Sergio & José Legaz, M. & Pedregal, Pablo, 2015. "A variable step-size implementation of a variational method for stiff differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 118(C), pages 49-57.
- Cheng, Xue & Chen, Zhong & Zhang, Qingpu, 2015. "An approximate solution for a neutral functional–differential equation with proportional delays," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 27-34.
- Zhang, Chengjian & Chen, Hao, 2010. "Asymptotic stability of block boundary value methods for delay differential-algebraic equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(1), pages 100-108.
- Zhang, Gui-Lai, 2017. "High order Runge–Kutta methods for impulsive delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 12-23.
- Liu, X. & Zeng, Y.M., 2019. "Analytic and numerical stability of delay differential equations with variable impulses," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 293-304.
- García, M.A. & Castro, M.A. & Martín, J.A. & Rodríguez, F., 2018. "Exact and nonstandard numerical schemes for linear delay differential models," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 337-345.
- M. Motawi Khashan & Rohul Amin & Muhammed I. Syam, 2019. "A New Algorithm for Fractional Riccati Type Differential Equations by Using Haar Wavelet," Mathematics, MDPI, vol. 7(6), pages 1-12, June.
- Olaf Posch & Timo Trimborn, 2010.
"Numerical solution of continuous-time DSGE models under Poisson uncertainty,"
Economics Working Papers
2010-08, Department of Economics and Business Economics, Aarhus University.
- Posch, Olaf & Trimborn, Timo, 2010. "Numerical solution of continuous-time DSGE models under Poisson uncertainty," Hannover Economic Papers (HEP) dp-450, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Tan, Zengqiang & Zhang, Chengjian, 2018. "Implicit-explicit one-leg methods for nonlinear stiff neutral equations," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 196-210.
- Rengamannar, Kaviya & Balakrishnan, Ganesh Priya & Palanisamy, Muthukumar & Niezabitowski, Michal, 2020. "Exponential stability of non-linear stochastic delay differential system with generalized delay-dependent impulsive points," Applied Mathematics and Computation, Elsevier, vol. 382(C).
- Zhao, Jingjun & Zhan, Rui & Xu, Yang, 2018. "D-convergence and conditional GDN-stability of exponential Runge–Kutta methods for semilinear delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 45-58.
More about this item
Keywords
impulsive discrete Runge–Kutta method; impulsive continuous Runge–Kutta method; Lipschitz condition; convergence; asymptotical stability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3002-:d:1486602. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.