IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v337y2018icp618-634.html
   My bibliography  Save this article

Numerical algorithms for mean exit time and escape probability of stochastic systems with asymmetric Lévy motion

Author

Listed:
  • Wang, Xiao
  • Duan, Jinqiao
  • Li, Xiaofan
  • Song, Renming

Abstract

For non-Gaussian stochastic dynamical systems, mean exit time and escape probability are important deterministic quantities, which can be obtained from integro-differential (nonlocal) equations. We develop an efficient and convergent numerical method for the mean first exit time and escape probability for stochastic systems with an asymmetric Lévy motion, and analyze the properties of the solutions of the nonlocal equations. The discretized equation has Toeplitz structure that enables utilization of fast Fourier transform in numerical simulations. We also investigate the effects of different system factors on the mean exit time and escape probability, including the skewness parameter, the size of the domain, the drift term and the intensity of Gaussian and non-Gaussian noises. We find that the behavior of the mean exit time and the escape probability has dramatic difference at the boundary of the domain when the index of stability crosses the critical value of one.

Suggested Citation

  • Wang, Xiao & Duan, Jinqiao & Li, Xiaofan & Song, Renming, 2018. "Numerical algorithms for mean exit time and escape probability of stochastic systems with asymmetric Lévy motion," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 618-634.
  • Handle: RePEc:eee:apmaco:v:337:y:2018:i:c:p:618-634
    DOI: 10.1016/j.amc.2018.05.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318304478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.05.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiao & Duan, Jinqiao & Li, Xiaofan & Luan, Yuanchao, 2015. "Numerical methods for the mean exit time and escape probability of two-dimensional stochastic dynamical systems with non-Gaussian noises," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 282-295.
    2. Jérémy Poirot & Peter Tankov, 2006. "Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(4), pages 327-344, December.
    3. Koren, T. & Chechkin, A.V. & Klafter, J., 2007. "On the first passage time and leapover properties of Lévy motions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 10-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Yi & Xu, Wei & Wei, Wei & Niu, Lizhi, 2023. "Dynamical transition of phenotypic states in breast cancer system with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    2. Song, Yi & Xu, Wei, 2021. "Asymmetric Lévy noise changed stability in a gene transcriptional regulatory system," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Wei-Long & Zeng, Chunhua, 2017. "Signal power amplification of intracellular calcium dynamics with non-Gaussian noises and time delay," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 400-405.
    2. Wijesundera, Isuri & Halgamuge, Malka N. & Nirmalathas, Ampalavanapillai & Nanayakkara, Thrishantha, 2016. "MFPT calculation for random walks in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 986-1002.
    3. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Lévy CARMA models for shocks in mortality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 205-227, June.
    4. Jean-Philippe Aguilar & Cyril Coste & Jan Korbel, 2016. "Non-Gaussian analytic option pricing: a closed formula for the L\'evy-stable model," Papers 1609.00987, arXiv.org, revised Nov 2017.
    5. Jorge Ignacio Gonz'alez C'azares & Aleksandar Mijatovi'c, 2021. "Monte Carlo algorithm for the extrema of tempered stable processes," Papers 2103.15310, arXiv.org, revised Dec 2022.
    6. Kohatsu-Higa, Arturo & Tankov, Peter, 2010. "Jump-adapted discretization schemes for Lévy-driven SDEs," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2258-2285, November.
    7. Shin Kim, Young & Rachev, Svetlozar T. & Leonardo Bianchi, Michele & Fabozzi, Frank J., 2010. "Tempered stable and tempered infinitely divisible GARCH models," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2096-2109, September.
    8. Kathrin Glau, 2015. "Feynman-Kac formula for L\'evy processes with discontinuous killing rate," Papers 1502.07531, arXiv.org, revised Nov 2015.
    9. Vygintas Gontis, 2021. "Order flow in the financial markets from the perspective of the Fractional L\'evy stable motion," Papers 2105.02057, arXiv.org, revised Nov 2021.
    10. Alaya, Mohamed Ben & Hajji, Kaouther & Kebaier, Ahmed, 2016. "Importance sampling and statistical Romberg method for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 1901-1931.
    11. Borak, Szymon & Misiorek, Adam & Weron, Rafał, 2010. "Models for heavy-tailed asset returns," SFB 649 Discussion Papers 2010-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Chengwei Zhang & Zhiyuan Zhang, 2018. "Sequential sampling for CGMY processes via decomposition of their time changes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(6-7), pages 522-534, September.
    13. Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2011. "Efficient and accurate log-Lévi approximations to Lévi driven LIBOR models," CREATES Research Papers 2011-22, Department of Economics and Business Economics, Aarhus University.
    14. Piergiacomo Sabino, 2021. "Pricing Energy Derivatives in Markets Driven by Tempered Stable and CGMY Processes of Ornstein-Uhlenbeck Type," Papers 2103.13252, arXiv.org.
    15. repec:wyi:journl:002150 is not listed on IDEAS
    16. Jean-Philippe Aguilar, 2021. "The value of power-related options under spectrally negative Lévy processes," Review of Derivatives Research, Springer, vol. 24(2), pages 173-196, July.
    17. Kathrin Glau, 2016. "A Feynman–Kac-type formula for Lévy processes with discontinuous killing rates," Finance and Stochastics, Springer, vol. 20(4), pages 1021-1059, October.
    18. Jing, Bing-Yi & Kong, Xin-Bing & Liu, Zhi & Mykland, Per, 2012. "On the jump activity index for semimartingales," Journal of Econometrics, Elsevier, vol. 166(2), pages 213-223.
    19. Jean-Philippe Aguilar, 2019. "The value of power-related options under spectrally negative L\'evy processes," Papers 1910.07971, arXiv.org, revised Jan 2021.
    20. Antonis Papapantoleon & John Schoenmakers & David Skovmand, 2011. "Efficient and accurate log-L\'evy approximations to L\'evy driven LIBOR models," Papers 1106.0866, arXiv.org, revised Jan 2012.
    21. Kyoung-Kuk Kim & Sojung Kim, 2016. "Simulation of Tempered Stable Lévy Bridges and Its Applications," Operations Research, INFORMS, vol. 64(2), pages 495-509, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:337:y:2018:i:c:p:618-634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.