IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v329y2018icp230-238.html
   My bibliography  Save this article

Skew CIR process, conditional characteristic function, moments and bond pricing

Author

Listed:
  • Tian, Yingxu
  • Zhang, Haoyan

Abstract

This paper is concerned with one general Feller’s Branching Diffusion, called skew CIR process. We derive the conditional characteristic function and moment of this general diffusion process first. Then with the same computing idea, we handle with its application in bond pricing. All the results we adopt are closed forms.

Suggested Citation

  • Tian, Yingxu & Zhang, Haoyan, 2018. "Skew CIR process, conditional characteristic function, moments and bond pricing," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 230-238.
  • Handle: RePEc:eee:apmaco:v:329:y:2018:i:c:p:230-238
    DOI: 10.1016/j.amc.2018.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318301152
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Trutnau, Gerald, 2011. "Pathwise uniqueness of the squared Bessel and CIR processes with skew reflection on a deterministic time dependent curve," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1845-1863, August.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Marc Decamps & Marc Goovaerts & Wim Schoutens, 2006. "Self Exciting Threshold Interest Rates Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(07), pages 1093-1122.
    4. Decamps, Marc & De Schepper, Ann & Goovaerts, Marc, 2004. "Applications of δ-function perturbation to the pricing of derivative securities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(3), pages 677-692.
    5. T. R. A. Corns & S. E. Satchell, 2007. "Skew Brownian Motion and Pricing European Options," The European Journal of Finance, Taylor & Francis Journals, vol. 13(6), pages 523-544.
    6. Trutnau, Gerald, 2010. "Weak existence of the squared Bessel and CIR processes with skew reflection on a deterministic time-dependent curve," Stochastic Processes and their Applications, Elsevier, vol. 120(4), pages 381-402, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grzegorz Krzy.zanowski & Andr'es Sosa, 2020. "Performance analysis of Zero Black-Derman-Toy interest rate model in catastrophic events: COVID-19 case study," Papers 2007.00705, arXiv.org, revised Jul 2020.
    2. Virginia Giorno & Amelia G. Nobile, 2021. "On the First-Passage Time Problem for a Feller-Type Diffusion Process," Mathematics, MDPI, vol. 9(19), pages 1-27, October.
    3. Virginia Giorno & Amelia G. Nobile, 2021. "Time-Inhomogeneous Feller-Type Diffusion Process in Population Dynamics," Mathematics, MDPI, vol. 9(16), pages 1-29, August.
    4. Grzegorz Krzy.zanowski & Ernesto Mordecki & Andr'es Sosa, 2019. "Zero Black-Derman-Toy interest rate model," Papers 1908.04401, arXiv.org, revised Jul 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangli Xu & Shiyu Song & Yongjin Wang, 2016. "The Valuation Of Options On Foreign Exchange Rate In A Target Zone," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-19, May.
    2. Guangli Xu & Xingchun Wang, 2021. "On the Transition Density and First Hitting Time Distributions of the Doubly Skewed CIR Process," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 735-752, September.
    3. Shiyu Song & Guangli Xu & Yongjin Wang, 2016. "On First Hitting Times for Skew CIR Processes," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 169-180, March.
    4. Étoré, Pierre & Martinez, Miguel, 2018. "Time inhomogeneous Stochastic Differential Equations involving the local time of the unknown process, and associated parabolic operators," Stochastic Processes and their Applications, Elsevier, vol. 128(8), pages 2642-2687.
    5. Alexander Gairat & Vadim Shcherbakov, 2014. "Density of Skew Brownian motion and its functionals with application in finance," Papers 1407.1715, arXiv.org, revised Mar 2015.
    6. Xiaoyang Zhuo & Olivier Menoukeu-Pamen, 2017. "Efficient Piecewise Trees For The Generalized Skew Vasicek Model With Discontinuous Drift," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
    7. Antoine Lejay & Paolo Pigato, 2019. "A Threshold Model For Local Volatility: Evidence Of Leverage And Mean Reversion Effects On Historical Data," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-24, June.
    8. Trutnau, Gerald, 2011. "Pathwise uniqueness of the squared Bessel and CIR processes with skew reflection on a deterministic time dependent curve," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1845-1863, August.
    9. Xu, Guangli & Wang, Yongjin, 2016. "On stability of the Markov-modulated skew CIR process," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 139-144.
    10. Zaniar Ahmadi & Xiaowen Zhou, 2024. "A note on Skew Brownian Motion with two-valued drift and an application," Papers 2407.09321, arXiv.org, revised Nov 2024.
    11. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    12. Hisashi Nakamura & Wataru Nozawa & Akihiko Takahashi, 2009. "Macroeconomic Implications of Term Structures of Interest Rates Under Stochastic Differential Utility with Non-Unitary EIS," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(3), pages 231-263, September.
    13. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.
    14. Henry, Olan T. & Olekalns, Nilss & Suardi, Sandy, 2007. "Testing for rate dependence and asymmetry in inflation uncertainty: Evidence from the G7 economies," Economics Letters, Elsevier, vol. 94(3), pages 383-388, March.
    15. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    16. Sergio Zúñiga, 1999. "Modelos de Tasas de Interés en Chile: Una Revisión," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 36(108), pages 875-893.
    17. Sandrine Lardic & Claire Gauthier, 2003. "Un modèle multifactoriel des spreads de crédit : estimation sur panels complets et incomplets," Économie et Prévision, Programme National Persée, vol. 159(3), pages 53-69.
    18. A. Itkin & V. Shcherbakov & A. Veygman, 2019. "New Model For Pricing Quanto Credit Default Swaps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-37, May.
    19. Tomas Björk & Magnus Blix & Camilla Landén, 2006. "On Finite Dimensional Realizations For The Term Structure Of Futures Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 281-314.
    20. Almeida, Thiago Ramos, 2024. "Estimating time-varying factors’ variance in the string-term structure model with stochastic volatility," Research in International Business and Finance, Elsevier, vol. 70(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:329:y:2018:i:c:p:230-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.