IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1407.1715.html
   My bibliography  Save this paper

Density of Skew Brownian motion and its functionals with application in finance

Author

Listed:
  • Alexander Gairat
  • Vadim Shcherbakov

Abstract

We derive the joint density of a Skew Brownian motion, its last visit to the origin, local and occupation times. The result is applied to option pricing in a two valued local volatility model and in a displaced diffusion model with constrained volatility.

Suggested Citation

  • Alexander Gairat & Vadim Shcherbakov, 2014. "Density of Skew Brownian motion and its functionals with application in finance," Papers 1407.1715, arXiv.org, revised Mar 2015.
  • Handle: RePEc:arx:papers:1407.1715
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1407.1715
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Decamps, Marc & De Schepper, Ann & Goovaerts, Marc, 2004. "Applications of δ-function perturbation to the pricing of derivative securities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(3), pages 677-692.
    2. Marc Decamps & Marc Goovaerts & Wim Schoutens, 2006. "Self Exciting Threshold Interest Rates Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(07), pages 1093-1122.
    3. Viatcheslav Gorovoi & Vadim Linetsky, 2004. "Black's Model of Interest Rates as Options, Eigenfunction Expansions and Japanese Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 49-78, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Yingxu & Zhang, Haoyan, 2018. "Skew CIR process, conditional characteristic function, moments and bond pricing," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 230-238.
    2. Guangli Xu & Shiyu Song & Yongjin Wang, 2016. "The Valuation Of Options On Foreign Exchange Rate In A Target Zone," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-19, May.
    3. Antoine Lejay & Paolo Pigato, 2019. "A Threshold Model For Local Volatility: Evidence Of Leverage And Mean Reversion Effects On Historical Data," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-24, June.
    4. Jens H. E. Christensen & Glenn D. Rudebusch, 2016. "Modeling Yields at the Zero Lower Bound: Are Shadow Rates the Solution?," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 75-125, Emerald Group Publishing Limited.
    5. Forde, Martin & Kumar, Rohini & Zhang, Hongzhong, 2015. "Large deviations for the boundary local time of doubly reflected Brownian motion," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 262-268.
    6. Monfort, Alain & Pegoraro, Fulvio & Renne, Jean-Paul & Roussellet, Guillaume, 2017. "Staying at zero with affine processes: An application to term structure modelling," Journal of Econometrics, Elsevier, vol. 201(2), pages 348-366.
    7. Lemke, Wolfgang & Vladu, Andreea, 2015. "A Shadow-Rate Term Structure Model for the Euro Area," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113159, Verein für Socialpolitik / German Economic Association.
    8. Jihun Han & Hyungbin Park, 2014. "The Intrinsic Bounds on the Risk Premium of Markovian Pricing Kernels," Papers 1411.4606, arXiv.org, revised Sep 2015.
    9. Eric T. Swanson & John C. Williams, 2014. "Measuring the Effect of the Zero Lower Bound on Medium- and Longer-Term Interest Rates," American Economic Review, American Economic Association, vol. 104(10), pages 3154-3185, October.
    10. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2019. "Gauge transformations in the dual space, and pricing and estimation in the long run in affine jump-diffusion models," Papers 1912.06948, arXiv.org, revised Dec 2019.
    11. Vadim Linetsky, 2004. "Spectral Expansions for Asian (Average Price) Options," Operations Research, INFORMS, vol. 52(6), pages 856-867, December.
    12. Andrey Itkin & Alexander Lipton & Dmitry Muravey, 2021. "Multilayer heat equations and their solutions via oscillating integral transforms," Papers 2112.00949, arXiv.org, revised Dec 2021.
    13. Andrey Itkin & Dmitry Muravey, 2021. "Semi-analytical pricing of barrier options in the time-dependent $\lambda$-SABR model," Papers 2109.02134, arXiv.org.
    14. Decamps, Marc & De Schepper, Ann & Goovaerts, Marc, 2006. "A path integral approach to asset-liability management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 404-416.
    15. Hyungbin Park, 2015. "Sensitivity Analysis of Long-Term Cash Flows," Papers 1511.03744, arXiv.org, revised Sep 2018.
    16. Matthew Lorig, 2011. "Pricing Derivatives on Multiscale Diffusions: an Eigenfunction Expansion Approach," Papers 1109.0738, arXiv.org, revised Apr 2012.
    17. Marco J. Lombardi & Feng Zhu, 2018. "A Shadow Policy Rate to Calibrate U.S. Monetary Policy at the Zero Lower Bound," International Journal of Central Banking, International Journal of Central Banking, vol. 14(5), pages 305-346, December.
    18. Jens H. E. Christensen & Glenn D. Rudebusch, 2015. "Estimating Shadow-Rate Term Structure Models with Near-Zero Yields," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 226-259.
    19. Neville Francis & Laura E. Jackson & Michael T. Owyang, 2014. "How Has Empirical Monetary Policy Analysis Changed After the Financial Crisis?," Working Papers 2014-19, Federal Reserve Bank of St. Louis.
    20. Antoine Jacquier & Aleksandar Mijatović, 2014. "Large Deviations for the Extended Heston Model: The Large-Time Case," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(3), pages 263-280, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1407.1715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.