IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v320y2018icp240-250.html
   My bibliography  Save this article

Nonlinear dynamics of discrete time multi-level leader–follower games

Author

Listed:
  • Wu, Ruijia
  • Van Gorder, Robert A.

Abstract

We study dynamic multiple-player multiple-level discrete time leader–follower games in the vein of Cournot or Stackelberg games; these games generalize two-player dynamic Stackelberg or Cournot duopoly games which have been considered recently. A given player acts as a leader toward players in lower levels, and as a follower toward players in higher levels. We consider the case of either perfect or incomplete information, which in this context means that players either have complete information about other players within their level (perfect information) or lack information at the present timestep about other players within their level (incomplete information). Players always have perfect information about all players which are (relative) followers, and incomplete information about players which are (relative) leaders. The Cournot-type adjustment process under these information structures at each timestep results in the temporal dynamics of the game. As we consider dynamic games, we observe a variety of behaviors in time, including convergence to steady state or equilibrium quantities, cycles or periodic oscillations, and chaotic dynamics. We find that the costs facing each player strongly influence the form of the long-time dynamics, as will the information structure (perfect or incomplete) selected. One interesting finding is that under perfect information players tend to quickly converge upon their respective equilibrium values, while incomplete information can result in loss of regularity and the emergence of periodic or chaotic dynamics. However, in cases where players may be pushed out of the game in the presence of high relative costs and perfect information, we find that non-equilibrium dynamics under incomplete information allow such players to retain positive production, hence they are able to remain in the game.

Suggested Citation

  • Wu, Ruijia & Van Gorder, Robert A., 2018. "Nonlinear dynamics of discrete time multi-level leader–follower games," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 240-250.
  • Handle: RePEc:eee:apmaco:v:320:y:2018:i:c:p:240-250
    DOI: 10.1016/j.amc.2017.09.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317306628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.09.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanif D. Sherali, 1984. "A Multiple Leader Stackelberg Model and Analysis," Operations Research, INFORMS, vol. 32(2), pages 390-404, April.
    2. Hanif D. Sherali & Allen L. Soyster & Frederic H. Murphy, 1983. "Stackelberg-Nash-Cournot Equilibria: Characterizations and Computations," Operations Research, INFORMS, vol. 31(2), pages 253-276, April.
    3. Agiza, H.N. & Elsadany, A.A., 2003. "Nonlinear dynamics in the Cournot duopoly game with heterogeneous players," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 512-524.
    4. Rassenti, Stephen & Reynolds, Stanley S. & Smith, Vernon L. & Szidarovszky, Ferenc, 2000. "Adaptation and convergence of behavior in repeated experimental Cournot games," Journal of Economic Behavior & Organization, Elsevier, vol. 41(2), pages 117-146, February.
    5. Puu, T., 1998. "The chaotic duopolists revisited," Journal of Economic Behavior & Organization, Elsevier, vol. 33(3-4), pages 385-394, January.
    6. Valletti, Tommaso M, 2000. "Minimum Quality Standards under Cournot Competition," Journal of Regulatory Economics, Springer, vol. 18(3), pages 235-245, November.
    7. Van Gorder, Robert A. & Caputo, Michael R., 2010. "Envelope theorems for locally differentiable open-loop Stackelberg equilibria of finite horizon differential games," Journal of Economic Dynamics and Control, Elsevier, vol. 34(6), pages 1123-1139, June.
    8. Jong-Shi Pang & Masao Fukushima, 2005. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 2(1), pages 21-56, January.
    9. Peng, Yu & Lu, Qian & Xiao, Yue, 2016. "A dynamic Stackelberg duopoly model with different strategies," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 128-134.
    10. Askar, S.S. & Alnowibet, K., 2016. "Cooperation versus noncooperation: Cournot duopolistic game based on delay and time-dependent parameters," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 580-584.
    11. Ahmed, E. & Hegazi, A.S. & Elettreby, M.F. & Askar, S.S., 2006. "On multi-team games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 809-816.
    12. A. Matsumoto, 2006. "Controlling the Cournot-Nash Chaos," Journal of Optimization Theory and Applications, Springer, vol. 128(2), pages 379-392, February.
    13. Peng, Yu & Lu, Qian, 2015. "Complex dynamics analysis for a duopoly Stackelberg game model with bounded rationality," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 259-268.
    14. M. Papageorgiou, 2003. "Chaos May Be an Optimal Plan," Journal of Optimization Theory and Applications, Springer, vol. 119(2), pages 387-393, November.
    15. Wernerfelt, Birger, 1989. "Tacit collusion in differentiated cournot games," Economics Letters, Elsevier, vol. 29(4), pages 303-306.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Qiu-xiang & Zhang Yu-hao & Huang Yi-min, 2018. "The Complexity Analysis in Dual-Channel Supply Chain Based on Fairness Concern and Different Business Objectives," Complexity, Hindawi, vol. 2018, pages 1-13, May.
    2. Jiaxin Wu & Hongjuan Yang & Tanveer Ahmed, 2023. "An assessment of the policy of poverty alleviation in continuous poverty-stricken areas: evidence from Yunnan Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9757-9777, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Yu & Lu, Qian & Xiao, Yue & Wu, Xue, 2019. "Complex dynamics analysis for a remanufacturing duopoly model with nonlinear cost," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 658-670.
    2. Yu Yu & Weisheng Yu, 2019. "The Complexion of Multi-period Stackelberg Triopoly Game with Bounded Rationality," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 457-478, January.
    3. Yang, Xuenan & Peng, Yu & Xiao, Yue & Wu, Xue, 2019. "Nonlinear dynamics of a duopoly Stackelberg game with marginal costs," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 185-191.
    4. Julien, Ludovic A., 2017. "On noncooperative oligopoly equilibrium in the multiple leader–follower game," European Journal of Operational Research, Elsevier, vol. 256(2), pages 650-662.
    5. Victor DeMiguel & Huifu Xu, 2009. "A Stochastic Multiple-Leader Stackelberg Model: Analysis, Computation, and Application," Operations Research, INFORMS, vol. 57(5), pages 1220-1235, October.
    6. Zhang, Ming & Wang, Guanghui & Xu, Jin & Qu, Cunquan, 2020. "Dynamic contest model with bounded rationality," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    7. Desmond Cai & Anish Agarwal & Adam Wierman, 2020. "On the Inefficiency of Forward Markets in Leader–Follower Competition," Operations Research, INFORMS, vol. 68(1), pages 35-52, January.
    8. Grau-Climent, Juan & Garcia-Perez, Luis & Alonso-Sanz, Ramon & Losada, Juan C., 2023. "Effect of players’ expectations and memory in a quantum Cournot game," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    9. Peng, Yu & Lu, Qian & Xiao, Yue, 2016. "A dynamic Stackelberg duopoly model with different strategies," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 128-134.
    10. Peng, Yu & Lu, Qian & Wu, Xue & Zhao, Yueru & Xiao, Yue, 2020. "Dynamics of Hotelling triopoly model with bounded rationality," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    11. S. S. Askar, 2020. "Duopolistic Stackelberg game: investigation of complex dynamics and chaos control," Operational Research, Springer, vol. 20(3), pages 1685-1699, September.
    12. Villena, Marcelo J. & Araneda, Axel A., 2017. "Dynamics and stability in retail competition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 134(C), pages 37-53.
    13. Shi, Lian & Sheng, Zhaohan & Xu, Feng, 2015. "The dynamics of competition in remanufacturing: A stability analysis," Economic Modelling, Elsevier, vol. 50(C), pages 245-253.
    14. Tomasz Dubiel-Teleszyński, 2010. "Complex Dynamics in a Bertrand Duopoly Game with Heterogeneous Players," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 2(2), pages 95-116, March.
    15. Ding, Zhanwen & Wang, Qiao & Jiang, Shumin, 2014. "Analysis on the dynamics of a Cournot investment game with bounded rationality," Economic Modelling, Elsevier, vol. 39(C), pages 204-212.
    16. Tian, Yi & Ma, Junhai & Xie, Lei & Koivumäki, Timo & Seppänen, Veikko, 2020. "Coordination and control of multi-channel supply chain driven by consumers’ channel preference and sales effort," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    17. Askar, S.S., 2018. "Tripoly Stackelberg game model: One leader versus two followers," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 301-311.
    18. S. S. Askar & Mona F. EL-Wakeel & M. A. Alrodaini, 2018. "Exploration of Complex Dynamics for Cournot Oligopoly Game with Differentiated Products," Complexity, Hindawi, vol. 2018, pages 1-13, February.
    19. Ming Hu & Masao Fukushima, 2011. "Variational Inequality Formulation of a Class of Multi-Leader-Follower Games," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 455-473, December.
    20. Zhang, Jixiang & Da, Qingli & Wang, Yanhua, 2007. "Analysis of nonlinear duopoly game with heterogeneous players," Economic Modelling, Elsevier, vol. 24(1), pages 138-148, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:320:y:2018:i:c:p:240-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.