IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v271y2015icp259-268.html
   My bibliography  Save this article

Complex dynamics analysis for a duopoly Stackelberg game model with bounded rationality

Author

Listed:
  • Peng, Yu
  • Lu, Qian

Abstract

In view of the effect of differences between plan products and actual products, a duopoly Stackelberg model of competition on output is formulated. The firms announce plan products sequentially in planning phase and act simultaneously in production phase. Backward induction is used to solve subgame Nash equilibrium. The equilibrium outputs and equilibrium profits are affected by cost coefficients. For the duopoly Stackelberg model, a nonlinear dynamical system which describes the time evolution with bounded rationality is analyzed. The equilibria of the corresponding discrete dynamical systems are investigated. The local stability analysis has been carried out. The stability of Nash equilibrium gives rise to complex dynamics as some parameters of the model are varied. Numerical simulations were used to show bifurcation diagram, stability region and chaos. It is also shown that the state variables feedback and parameter variation method can be used to keep the system from instability and chaos.

Suggested Citation

  • Peng, Yu & Lu, Qian, 2015. "Complex dynamics analysis for a duopoly Stackelberg game model with bounded rationality," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 259-268.
  • Handle: RePEc:eee:apmaco:v:271:y:2015:i:c:p:259-268
    DOI: 10.1016/j.amc.2015.08.138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315012448
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.08.138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naimzada, Ahmad K. & Sbragia, Lucia, 2006. "Oligopoly games with nonlinear demand and cost functions: Two boundedly rational adjustment processes," Chaos, Solitons & Fractals, Elsevier, vol. 29(3), pages 707-722.
    2. Agiza, H.N. & Elsadany, A.A., 2003. "Nonlinear dynamics in the Cournot duopoly game with heterogeneous players," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 512-524.
    3. Puu, T., 1998. "The chaotic duopolists revisited," Journal of Economic Behavior & Organization, Elsevier, vol. 33(3-4), pages 385-394, January.
    4. Zhang, Jixiang & Da, Qingli & Wang, Yanhua, 2007. "Analysis of nonlinear duopoly game with heterogeneous players," Economic Modelling, Elsevier, vol. 24(1), pages 138-148, January.
    5. Bischi, Gian Italo & Naimzada, Ahmad K. & Sbragia, Lucia, 2007. "Oligopoly games with Local Monopolistic Approximation," Journal of Economic Behavior & Organization, Elsevier, vol. 62(3), pages 371-388, March.
    6. Agiza, H.N. & Hegazi, A.S. & Elsadany, A.A., 2002. "Complex dynamics and synchronization of a duopoly game with bounded rationality," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 58(2), pages 133-146.
    7. Ding, Zhanwen & Li, Qiang & Jiang, Shumin & Wang, Xuedi, 2015. "Dynamics in a Cournot investment game with heterogeneous players," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 939-950.
    8. Bischi, Gian-Italo & Stefanini, Luciano & Gardini, Laura, 1998. "Synchronization, intermittency and critical curves in a duopoly game," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 44(6), pages 559-585.
    9. Hołyst, Janusz A & Urbanowicz, Krzysztof, 2000. "Chaos control in economical model by time-delayed feedback method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 587-598.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Yu & Lu, Qian & Xiao, Yue, 2016. "A dynamic Stackelberg duopoly model with different strategies," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 128-134.
    2. Georges SARAFOPOULOS & Kosmas PAPADOPOULOS, 2017. "On A Cournot Duopoly Game With Differentiated Goods, Heterogeneous Expectations And A Cost Function Including Emission Costs," Scientific Bulletin - Economic Sciences, University of Pitesti, vol. 16(1), pages 11-22.
    3. Zhang, Ming & Wang, Guanghui & Xu, Jin & Qu, Cunquan, 2020. "Dynamic contest model with bounded rationality," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    4. Tramontana, Fabio, 2010. "Heterogeneous duopoly with isoelastic demand function," Economic Modelling, Elsevier, vol. 27(1), pages 350-357, January.
    5. Villena, Marcelo J. & Araneda, Axel A., 2017. "Dynamics and stability in retail competition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 134(C), pages 37-53.
    6. Xin, Baogui & Chen, Tong, 2011. "On a master-slave Bertrand game model," Economic Modelling, Elsevier, vol. 28(4), pages 1864-1870, July.
    7. Luciano Fanti & Luca Gori, 2013. "Stability Analysis in a Bertrand Duopoly with Different Product Quality and Heterogeneous Expectations," Journal of Industry, Competition and Trade, Springer, vol. 13(4), pages 481-501, December.
    8. Zhu, Xiaolong & Zhu, Weidong & Yu, Lei, 2014. "Analysis of a nonlinear mixed Cournot game with boundedly rational players," Chaos, Solitons & Fractals, Elsevier, vol. 59(C), pages 82-88.
    9. Askar, S.S., 2018. "Tripoly Stackelberg game model: One leader versus two followers," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 301-311.
    10. Kamalinejad, Howra & Majd, Vahid Johari & Kebriaei, Hamed & Rahimi-Kian, Ashkan, 2010. "Cournot games with linear regression expectations in oligopolistic markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(9), pages 1874-1885.
    11. Peng, Yu & Lu, Qian & Xiao, Yue & Wu, Xue, 2019. "Complex dynamics analysis for a remanufacturing duopoly model with nonlinear cost," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 658-670.
    12. Ding, Zhanwen & Wang, Qiao & Jiang, Shumin, 2014. "Analysis on the dynamics of a Cournot investment game with bounded rationality," Economic Modelling, Elsevier, vol. 39(C), pages 204-212.
    13. Ding, Zhanwen & Li, Qiang & Jiang, Shumin & Wang, Xuedi, 2015. "Dynamics in a Cournot investment game with heterogeneous players," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 939-950.
    14. PAPADOPOULOS Kosmas & SARAFOPOULOS Georges, 2019. "Dynamics of a Cournot Game with Differentiated Goods and Asymmetric Cost Functions based on Relative Profit Maximization," European Journal of Interdisciplinary Studies, Bucharest Economic Academy, issue 02, June.
    15. S. S. Askar, 2020. "Duopolistic Stackelberg game: investigation of complex dynamics and chaos control," Operational Research, Springer, vol. 20(3), pages 1685-1699, September.
    16. Ding, Zhanwen & Shi, Guiping, 2009. "Cooperation in a dynamical adjustment of duopoly game with incomplete information," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 989-993.
    17. Fanti, Luciano & Gori, Luca & Sodini, Mauro, 2012. "Nonlinear dynamics in a Cournot duopoly with relative profit delegation," Chaos, Solitons & Fractals, Elsevier, vol. 45(12), pages 1469-1478.
    18. Ueda, Masahiko, 2019. "Effect of information asymmetry in Cournot duopoly game with bounded rationality," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    19. Shi, Lian & Sheng, Zhaohan & Xu, Feng, 2015. "The dynamics of competition in remanufacturing: A stability analysis," Economic Modelling, Elsevier, vol. 50(C), pages 245-253.
    20. Gian Italo Bischi & Fabio Lamantia & Davide Radi, 2018. "Evolutionary oligopoly games with heterogeneous adaptive players," Chapters, in: Luis C. Corchón & Marco A. Marini (ed.), Handbook of Game Theory and Industrial Organization, Volume I, chapter 12, pages 343-370, Edward Elgar Publishing.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:271:y:2015:i:c:p:259-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.