IDEAS home Printed from https://ideas.repec.org/a/taf/mpopst/v18y2011i2p122-149.html
   My bibliography  Save this article

Modelling Mutation to a Cytotoxic T-lymphocyte HIV Vaccine

Author

Listed:
  • BERNHARD KONRAD
  • NAVEEN VAIDYA
  • ROBERT SMITH?

Abstract

Resistance to a postinfection HIV vaccine that stimulates cytotoxic T-lymphocytes (CTLs) depends on the relationship between the vaccine strength, the fitness cost of the mutant strain, and the rate of mutant escape. If the vaccine is strong enough, both strains of the virus should be controlled by administering the vaccine sufficiently often. However, if escape mutation to the vaccine occurs, then either the wild type or the mutant can outcompete the other strain. Imperfect adherence may result in the persistence of the mutant, while fluctuations in the vaccination time—even if no vaccines are missed—may result in the mutant outcompeting the wild type.

Suggested Citation

  • Bernhard Konrad & Naveen Vaidya & Robert Smith?, 2011. "Modelling Mutation to a Cytotoxic T-lymphocyte HIV Vaccine," Mathematical Population Studies, Taylor & Francis Journals, vol. 18(2), pages 122-149.
  • Handle: RePEc:taf:mpopst:v:18:y:2011:i:2:p:122-149
    DOI: 10.1080/08898480.2011.564566
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/08898480.2011.564566
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/08898480.2011.564566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dan H. Barouch & Jennifer Kunstman & Marcelo J. Kuroda & Jörn E. Schmitz & Sampa Santra & Fred W. Peyerl & Georgia R. Krivulka & Kristin Beaudry & Michelle A. Lifton & Darci A. Gorgone & David C. Mont, 2002. "Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes," Nature, Nature, vol. 415(6869), pages 335-339, January.
    2. Alan S. Perelson & Avidan U. Neumann & Martin Markowitz & John M. Leonard & David D. Ho, 1996. "HIV-1 Dynamics In Vivo: Virion Clearance Rate, Infected Cell Lifespan, and Viral Generation Time," Working Papers 96-02-004, Santa Fe Institute.
    3. Kathleen L. Collins & Benjamin K. Chen & Spyros A. Kalams & Bruce D. Walker & David Baltimore, 1998. "HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes," Nature, Nature, vol. 391(6665), pages 397-401, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulrich D Kadolsky & Becca Asquith, 2010. "Quantifying the Impact of Human Immunodeficiency Virus-1 Escape From Cytotoxic T-Lymphocytes," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-11, November.
    2. Eva M. Stevenson & Sandra Terry & Dennis Copertino & Louise Leyre & Ali Danesh & Jared Weiler & Adam R. Ward & Pragya Khadka & Evan McNeil & Kevin Bernard & Itzayana G. Miller & Grant B. Ellsworth & C, 2022. "SARS CoV-2 mRNA vaccination exposes latent HIV to Nef-specific CD8+ T-cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Sutimin, & Wijaya, Karunia Putra & Páez Chávez, Joseph & Tian, Tianhai, 2021. "An in-host HIV-1 infection model incorporating quiescent and activated CD4+ T cells as well as CTL response," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    4. Iraj Hosseini & Feilim Mac Gabhann, 2012. "Multi-Scale Modeling of HIV Infection in vitro and APOBEC3G-Based Anti-Retroviral Therapy," PLOS Computational Biology, Public Library of Science, vol. 8(2), pages 1-17, February.
    5. E Fabian Cardozo & Adriana Andrade & John W Mellors & Daniel R Kuritzkes & Alan S Perelson & Ruy M Ribeiro, 2017. "Treatment with integrase inhibitor suggests a new interpretation of HIV RNA decay curves that reveals a subset of cells with slow integration," PLOS Pathogens, Public Library of Science, vol. 13(7), pages 1-18, July.
    6. Nathaniel D Bachtel & Gisele Umviligihozo & Suzanne Pickering & Talia M Mota & Hua Liang & Gregory Q Del Prete & Pramita Chatterjee & Guinevere Q Lee & Rasmi Thomas & Mark A Brockman & Stuart Neil & M, 2018. "HLA-C downregulation by HIV-1 adapts to host HLA genotype," PLOS Pathogens, Public Library of Science, vol. 14(9), pages 1-25, September.
    7. A. M. Elaiw & N. H. AlShamrani & E. Dahy & A. A. Abdellatif & Aeshah A. Raezah, 2023. "Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection," Mathematics, MDPI, vol. 11(3), pages 1-26, January.
    8. Yu Shi & Zizhao Zhang & Weng Kee Wong, 2019. "Particle swarm based algorithms for finding locally and Bayesian D-optimal designs," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-17, December.
    9. Wang, Jinliang & Guo, Min & Liu, Xianning & Zhao, Zhitao, 2016. "Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 149-161.
    10. Heffernan, J.M. & Keeling, M.J., 2008. "An in-host model of acute infection: Measles as a case study," Theoretical Population Biology, Elsevier, vol. 73(1), pages 134-147.
    11. Singh, Harendra, 2021. "Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    12. Xu, Jinhu & Geng, Yan & Zhou, Yicang, 2017. "Global dynamics for an age-structured HIV virus infection model with cellular infection and antiretroviral therapy," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 62-83.
    13. Jianwei Chen, 2010. "Modelling long‐term human immunodeficiency virus dynamic models with application to acquired immune deficiency syndrome clinical study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 805-820, November.
    14. Musharif Ahmed & Muhammad Aamer Saleem & Muhammad Zubair & Ijaz Mansoor Qureshi & Saad Zafar, 2022. "Stability analysis and memetic computation using differential evolution for in-host HIV model," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(1), pages 76-91, March.
    15. Dubey, Preeti & Dubey, Uma S. & Dubey, Balram, 2018. "Modeling the role of acquired immune response and antiretroviral therapy in the dynamics of HIV infection," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 144(C), pages 120-137.
    16. Yang, Junyuan & Wang, Xiaoyan, 2019. "Dynamics and asymptotical profiles of an age-structured viral infection model with spatial diffusion," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 236-254.
    17. Jessica M Conway & Alan S Perelson & Jonathan Z Li, 2019. "Predictions of time to HIV viral rebound following ART suspension that incorporate personal biomarkers," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-26, July.
    18. Becca Asquith, 2008. "The Evolutionary Selective Advantage of HIV-1 Escape Variants and the Contribution of Escape to the HLA-Associated Risk of AIDS Progression," PLOS ONE, Public Library of Science, vol. 3(10), pages 1-10, October.
    19. Guo, Wenjuan & Zhang, Qimin, 2021. "Explicit numerical approximation for an impulsive stochastic age-structured HIV infection model with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 86-115.
    20. González, Ramón E.R. & Coutinho, Sérgio & Zorzenon dos Santos, Rita Maria & de Figueirêdo, Pedro Hugo, 2013. "Dynamics of the HIV infection under antiretroviral therapy: A cellular automata approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4701-4716.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:mpopst:v:18:y:2011:i:2:p:122-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GMPS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.