IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v273y2016icp1123-1129.html
   My bibliography  Save this article

On the spectrum of the normalized Laplacian of iterated triangulations of graphs

Author

Listed:
  • Xie, Pinchen
  • Zhang, Zhongzhi
  • Comellas, Francesc

Abstract

The eigenvalues of the normalized Laplacian of a graph provide information on its topological and structural characteristics and also on some relevant dynamical aspects, specifically in relation to random walks. In this paper we determine the spectra of the normalized Laplacian of iterated triangulations of a generic simple connected graph. As an application, we also find closed-forms for their multiplicative degree-Kirchhoff index, Kemeny’s constant and number of spanning trees.

Suggested Citation

  • Xie, Pinchen & Zhang, Zhongzhi & Comellas, Francesc, 2016. "On the spectrum of the normalized Laplacian of iterated triangulations of graphs," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1123-1129.
  • Handle: RePEc:eee:apmaco:v:273:y:2016:i:c:p:1123-1129
    DOI: 10.1016/j.amc.2015.09.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315012953
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.09.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zhongzhi & Rong, Lili & Zhou, Shuigeng, 2007. "A general geometric growth model for pseudofractal scale-free web," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 329-339.
    2. Mehatari, Ranjit & Banerjee, Anirban, 2015. "Effect on normalized graph Laplacian spectrum by motif attachment and duplication," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 382-387.
    3. Zhongzhi Zhang & Shuigeng Zhou & Lichao Chen, 2007. "Evolving pseudofractal networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 58(3), pages 337-344, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Jing & Li, Shuchao & Li, Xuechao, 2016. "The normalized Laplacian, degree-Kirchhoff index and spanning trees of the linear polyomino chains," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 324-334.
    2. Wang, Chengyong & Guo, Ziliang & Li, Shuchao, 2018. "Expected hitting times for random walks on the k-triangle graph and their applications," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 698-710.
    3. Xie, Pinchen & Yang, Bingjia & Zhang, Zhongzhi & Andrade, Roberto F.S., 2018. "Exact evaluation of the causal spectrum and localization properties of electronic states on a scale-free network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 40-48.
    4. Sun, Shaowei & Das, Kinkar Ch., 2019. "On the second largest normalized Laplacian eigenvalue of graphs," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 531-541.
    5. Huang, Jing & Li, Shuchao, 2018. "The normalized Laplacians on both k-triangle graph and k-quadrilateral graph with their applications," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 213-225.
    6. Liao, Yunhua & Aziz-Alaoui, M.A. & Zhao, Junchan & Hou, Yaoping, 2019. "The behavior of Tutte polynomials of graphs under five graph operations and its applications," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    7. Li, Deqiong & Hou, Yaoping, 2017. "The normalized Laplacian spectrum of quadrilateral graphs and its applications," Applied Mathematics and Computation, Elsevier, vol. 297(C), pages 180-188.
    8. Cui, Shu-Yu & Tian, Gui-Xian, 2017. "The spectra and the signless Laplacian spectra of graphs with pockets," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 363-371.
    9. Palacios, José Luis & Markowsky, Greg, 2021. "Kemeny’s constant and the Kirchhoff index for the cluster of highly symmetric graphs," Applied Mathematics and Computation, Elsevier, vol. 406(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao, Yunhua & Aziz-Alaoui, M.A. & Zhao, Junchan & Hou, Yaoping, 2019. "The behavior of Tutte polynomials of graphs under five graph operations and its applications," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    2. Knor, Martin & Škrekovski, Riste, 2013. "Deterministic self-similar models of complex networks based on very symmetric graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4629-4637.
    3. Sun, Lina & Huang, Ning & Li, Ruiying & Bai, Yanan, 2019. "A new fractal reliability model for networks with node fractal growth and no-loop," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 699-707.
    4. Banerjee, Anirban & Mehatari, Ranjit, 2015. "Characteristics polynomial of normalized Laplacian for trees," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 838-844.
    5. Sreejith, R.P. & Jost, Jürgen & Saucan, Emil & Samal, Areejit, 2017. "Systematic evaluation of a new combinatorial curvature for complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 50-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:273:y:2016:i:c:p:1123-1129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.