IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v377y2007i1p329-339.html
   My bibliography  Save this article

A general geometric growth model for pseudofractal scale-free web

Author

Listed:
  • Zhang, Zhongzhi
  • Rong, Lili
  • Zhou, Shuigeng

Abstract

We propose a general geometric growth model for pseudofractal scale-free web (PSW), which is controlled by two tunable parameters. We derive exactly the main characteristics of the networks: degree distribution, second moment of degree distribution, degree correlations, distribution of clustering coefficient, as well as the diameter, which are partially determined by the parameters. Analytical results show that the resulting networks are disassortative and follow power-law degree distributions with a more general degree exponent tuned from 2 to 1+ln3ln2; the clustering coefficient of each individual node is inversely proportional to its degree and the average clustering coefficient of all nodes approaches to a large nonzero value in the infinite network order; the diameter grows logarithmically with the number of network nodes. All these reveal that the networks described by our model have small-world effect and scale-free topology.

Suggested Citation

  • Zhang, Zhongzhi & Rong, Lili & Zhou, Shuigeng, 2007. "A general geometric growth model for pseudofractal scale-free web," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 329-339.
  • Handle: RePEc:eee:phsmap:v:377:y:2007:i:1:p:329-339
    DOI: 10.1016/j.physa.2006.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106012003
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Lina & Huang, Ning & Li, Ruiying & Bai, Yanan, 2019. "A new fractal reliability model for networks with node fractal growth and no-loop," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 699-707.
    2. Knor, Martin & Škrekovski, Riste, 2013. "Deterministic self-similar models of complex networks based on very symmetric graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4629-4637.
    3. Xie, Pinchen & Zhang, Zhongzhi & Comellas, Francesc, 2016. "On the spectrum of the normalized Laplacian of iterated triangulations of graphs," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1123-1129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:377:y:2007:i:1:p:329-339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.