IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v58y2007i3p337-344.html
   My bibliography  Save this article

Evolving pseudofractal networks

Author

Listed:
  • Zhongzhi Zhang
  • Shuigeng Zhou
  • Lichao Chen

Abstract

We present a family of scale-free network model consisting of cliques, which is established by a simple recursive algorithm. We investigate the networks both analytically and numerically. The obtained analytical solutions show that the networks follow a power-law degree distribution, with degree exponent continuously tuned between 2 and 3. The exact expression of clustering coefficient is also provided for the networks. Furthermore, the investigation of the average path length reveals that the networks possess small-world feature. Interestingly, we find that a special case of our model can be mapped into the Yule process. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Suggested Citation

  • Zhongzhi Zhang & Shuigeng Zhou & Lichao Chen, 2007. "Evolving pseudofractal networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 58(3), pages 337-344, August.
  • Handle: RePEc:spr:eurphb:v:58:y:2007:i:3:p:337-344
    DOI: 10.1140/epjb/e2007-00229-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2007-00229-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2007-00229-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Knor, Martin & Škrekovski, Riste, 2013. "Deterministic self-similar models of complex networks based on very symmetric graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4629-4637.
    2. Liao, Yunhua & Aziz-Alaoui, M.A. & Zhao, Junchan & Hou, Yaoping, 2019. "The behavior of Tutte polynomials of graphs under five graph operations and its applications," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    3. Xie, Pinchen & Zhang, Zhongzhi & Comellas, Francesc, 2016. "On the spectrum of the normalized Laplacian of iterated triangulations of graphs," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1123-1129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:58:y:2007:i:3:p:337-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.