IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v271y2015icp1004-1023.html
   My bibliography  Save this article

An adaptive artificial bee colony algorithm for global optimization

Author

Listed:
  • Yurtkuran, Alkın
  • Emel, Erdal

Abstract

Artificial bee colony algorithm (ABC) is a recently introduced swarm based meta-heuristic algorithm. ABC mimics the foraging behavior of honey bee swarms. Original ABC algorithm is known to have a poor exploitation performance. To remedy this problem, this paper proposes an adaptive artificial bee colony algorithm (AABC), which employs six different search rules that have been successfully used in the literature. Therefore, the AABC benefits from the use of different search and information sharing techniques within an overall search process. A probabilistic selection is applied to determine the search rule to be used in generating a candidate solution. The probability of selecting a given search rule is further updated according to its prior performance using the roulette wheel technique. Moreover, a memory length is introduced corresponding to the maximum number of moves to reset selection probabilities. Experiments are conducted using well-known benchmark problems with varying dimensionality to compare AABC with other efficient ABC variants. Computational results reveal that the proposed AABC outperforms other novel ABC variants.

Suggested Citation

  • Yurtkuran, Alkın & Emel, Erdal, 2015. "An adaptive artificial bee colony algorithm for global optimization," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 1004-1023.
  • Handle: RePEc:eee:apmaco:v:271:y:2015:i:c:p:1004-1023
    DOI: 10.1016/j.amc.2015.09.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315013028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.09.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Biswas, Subhodip & Das, Swagatam & Debchoudhury, Shantanab & Kundu, Souvik, 2014. "Co-evolving bee colonies by forager migration: A multi-swarm based Artificial Bee Colony algorithm for global search space," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 216-234.
    2. Hong, Wei-Chiang, 2011. "Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm," Energy, Elsevier, vol. 36(9), pages 5568-5578.
    3. Szeto, W.Y. & Wu, Yongzhong & Ho, Sin C., 2011. "An artificial bee colony algorithm for the capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 126-135, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yetgin, Zeki & Abaci, Hüseyin, 2021. "Honey formation optimization framework for design problems," Applied Mathematics and Computation, Elsevier, vol. 394(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
    3. Zeynalov, Ayaz, 2014. "Nowcasting Tourist Arrivals to Prague: Google Econometrics," MPRA Paper 60945, University Library of Munich, Germany.
    4. Balasubramanian, C. & Lal Raja Singh, R., 2024. "IOT based energy management in smart grid under price based demand response based on hybrid FHO-RERNN approach," Applied Energy, Elsevier, vol. 361(C).
    5. Gomez, William & Wang, Fu-Kwun & Lo, Shih-Che, 2024. "A hybrid approach based machine learning models in electricity markets," Energy, Elsevier, vol. 289(C).
    6. Yang, YouLong & Che, JinXing & Li, YanYing & Zhao, YanJun & Zhu, SuLing, 2016. "An incremental electric load forecasting model based on support vector regression," Energy, Elsevier, vol. 113(C), pages 796-808.
    7. Qi Liu & Gengzhong Feng & Giri Kumar Tayi & Jun Tian, 2021. "Managing Data Quality of the Data Warehouse: A Chance-Constrained Programming Approach," Information Systems Frontiers, Springer, vol. 23(2), pages 375-389, April.
    8. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    9. Deihimi, Ali & Showkati, Hemen, 2012. "Application of echo state networks in short-term electric load forecasting," Energy, Elsevier, vol. 39(1), pages 327-340.
    10. Son, Hyojoo & Kim, Changwan, 2017. "Short-term forecasting of electricity demand for the residential sector using weather and social variables," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 200-207.
    11. Ko, Chia-Nan & Lee, Cheng-Ming, 2013. "Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter," Energy, Elsevier, vol. 49(C), pages 413-422.
    12. Yunxuan Dong & Jianzhou Wang & Chen Wang & Zhenhai Guo, 2017. "Research and Application of Hybrid Forecasting Model Based on an Optimal Feature Selection System—A Case Study on Electrical Load Forecasting," Energies, MDPI, vol. 10(4), pages 1-27, April.
    13. Guo, Jiaqi & Long, Jiancheng & Xu, Xiaoming & Yu, Miao & Yuan, Kai, 2022. "The vehicle routing problem of intercity ride-sharing between two cities," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 113-139.
    14. Min-Liang Huang, 2016. "Hybridization of Chaotic Quantum Particle Swarm Optimization with SVR in Electric Demand Forecasting," Energies, MDPI, vol. 9(6), pages 1-16, May.
    15. Deihimi, Ali & Orang, Omid & Showkati, Hemen, 2013. "Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction," Energy, Elsevier, vol. 57(C), pages 382-401.
    16. Heydari, Azim & Astiaso Garcia, Davide & Keynia, Farshid & Bisegna, Fabio & De Santoli, Livio, 2019. "A novel composite neural network based method for wind and solar power forecasting in microgrids," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Min-Xia Zhang & Hong-Fan Yan & Jia-Yu Wu & Yu-Jun Zheng, 2020. "Quarantine Vehicle Scheduling for Transferring High-Risk Individuals in Epidemic Areas," IJERPH, MDPI, vol. 17(7), pages 1-17, March.
    18. Baozhen Yao & Qianqian Yan & Mengjie Zhang & Yunong Yang, 2017. "Improved artificial bee colony algorithm for vehicle routing problem with time windows," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-18, September.
    19. Xiang, Yi & Zhou, Yuren & Liu, Hailin, 2015. "An elitism based multi-objective artificial bee colony algorithm," European Journal of Operational Research, Elsevier, vol. 245(1), pages 168-193.
    20. Kelachukwu J. Iheanetu, 2022. "Solar Photovoltaic Power Forecasting: A Review," Sustainability, MDPI, vol. 14(24), pages 1-31, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:271:y:2015:i:c:p:1004-1023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.