IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v160y2014i2d10.1007_s10957-013-0268-x.html
   My bibliography  Save this article

An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders for Nonlinear Equations

Author

Listed:
  • Young Hee Geum

    (Dankook University)

  • Young Ik Kim

    (Dankook University)

Abstract

This paper investigates an optimal family of derivative-free fast 16th-order multipoint iterative methods for solving nonlinear equations using polynomial weighting functions and a real control parameter. Convergence analyses and computational properties are shown along with a comparison of the classical work done by Kung–Traub in 1974. The underlying theoretical treatment and computational advantage of faster computing time is well supported through a variety of concrete numerical examples.

Suggested Citation

  • Young Hee Geum & Young Ik Kim, 2014. "An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders for Nonlinear Equations," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 608-622, February.
  • Handle: RePEc:spr:joptap:v:160:y:2014:i:2:d:10.1007_s10957-013-0268-x
    DOI: 10.1007/s10957-013-0268-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0268-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0268-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Min Chen & Tsu-Shuan Chang, 2011. "On the Higher-Order Method for the Solution of a Nonlinear Scalar Equation," Journal of Optimization Theory and Applications, Springer, vol. 149(3), pages 647-664, June.
    2. Fazlollah Soleymani & Mahdi Sharifi & Bibi Somayeh Mousavi, 2012. "An Improvement of Ostrowski’s and King’s Techniques with Optimal Convergence Order Eight," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 225-236, April.
    3. A. Germani & C. Manes & P. Palumbo & M. Sciandrone, 2006. "Higher-Order Method for the Solution of a Nonlinear Scalar Equation," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 347-364, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fazlollah Soleymani & Mahdi Sharifi & Bibi Somayeh Mousavi, 2012. "An Improvement of Ostrowski’s and King’s Techniques with Optimal Convergence Order Eight," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 225-236, April.
    2. Min Chen & Tsu-Shuan Chang, 2011. "On the Higher-Order Method for the Solution of a Nonlinear Scalar Equation," Journal of Optimization Theory and Applications, Springer, vol. 149(3), pages 647-664, June.
    3. F. Soleymani, 2012. "Optimized Steffensen-Type Methods with Eighth-Order Convergence and High Efficiency Index," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2012, pages 1-18, September.
    4. Xiaofeng Wang, 2022. "A Novel n -Point Newton-Type Root-Finding Method of High Computational Efficiency," Mathematics, MDPI, vol. 10(7), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:160:y:2014:i:2:d:10.1007_s10957-013-0268-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.