IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/932420.html
   My bibliography  Save this article

Optimized Steffensen-Type Methods with Eighth-Order Convergence and High Efficiency Index

Author

Listed:
  • F. Soleymani

Abstract

Steffensen-type methods are practical in solving nonlinear equations. Since, such schemes do not need derivative evaluation per iteration. Hence, this work contributes two new multistep classes of Steffensen-type methods for finding the solution of the nonlinear equation ð ‘“ ( ð ‘¥ ) = 0 . New techniques can be taken into account as the generalizations of the one-step method of Steffensen. Theoretical proofs of the main theorems are furnished to reveal the eighth-order convergence. Per computing step, the derived methods require only four function evaluations. Experimental results are also given to add more supports on the underlying theory of this paper as well as lead us to draw a conclusion on the efficiency of the developed classes.

Suggested Citation

  • F. Soleymani, 2012. "Optimized Steffensen-Type Methods with Eighth-Order Convergence and High Efficiency Index," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2012, pages 1-18, September.
  • Handle: RePEc:hin:jijmms:932420
    DOI: 10.1155/2012/932420
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJMMS/2012/932420.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJMMS/2012/932420.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/932420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. Soleymani & S. Karimi Vanani & M. Jamali Paghaleh, 2012. "A Class of Three-Step Derivative-Free Root Solvers with Optimal Convergence Order," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-15, February.
    2. Fazlollah Soleymani & Mahdi Sharifi & Bibi Somayeh Mousavi, 2012. "An Improvement of Ostrowski’s and King’s Techniques with Optimal Convergence Order Eight," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 225-236, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Li & Xiaomeng Wang & Kalyanasundaram Madhu, 2019. "Higher-Order Derivative-Free Iterative Methods for Solving Nonlinear Equations and Their Basins of Attraction," Mathematics, MDPI, vol. 7(11), pages 1-15, November.
    2. Young Hee Geum & Young Ik Kim, 2014. "An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders for Nonlinear Equations," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 608-622, February.
    3. Xiaofeng Wang, 2022. "A Novel n -Point Newton-Type Root-Finding Method of High Computational Efficiency," Mathematics, MDPI, vol. 10(7), pages 1-22, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:932420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.