IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v143y2009i2d10.1007_s10957-009-9559-7.html
   My bibliography  Save this article

Penalty Approach to the HJB Equation Arising in European Stock Option Pricing with Proportional Transaction Costs

Author

Listed:
  • W. Li

    (University of Western Australia)

  • S. Wang

    (University of Western Australia)

Abstract

We present a novel penalty approach to the Hamilton-Jacobi-Bellman (HJB) equation arising from the valuation of European options with proportional transaction costs. We first approximate the HJB equation by a quasilinear 2nd-order partial differential equation containing two linear penalty terms with penalty parameters λ 1 and λ 2 respectively. Then, we show that there exists a unique viscosity solution to the penalized equation. Finally, we prove that, when both λ 1 and λ 2 approach infinity, the viscosity solution to the penalized equation converges to that of the corresponding original HJB equation.

Suggested Citation

  • W. Li & S. Wang, 2009. "Penalty Approach to the HJB Equation Arising in European Stock Option Pricing with Proportional Transaction Costs," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 279-293, November.
  • Handle: RePEc:spr:joptap:v:143:y:2009:i:2:d:10.1007_s10957-009-9559-7
    DOI: 10.1007/s10957-009-9559-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-009-9559-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-009-9559-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    2. Edirisinghe, Chanaka & Naik, Vasanttilak & Uppal, Raman, 1993. "Optimal Replication of Options with Transactions Costs and Trading Restrictions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(1), pages 117-138, March.
    3. Damgaard, Anders, 2003. "Utility based option evaluation with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 27(4), pages 667-700, February.
    4. Zakamouline, Valeri I., 2006. "European option pricing and hedging with both fixed and proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 30(1), pages 1-25, January.
    5. Clewlow, Les & Hodges, Stewart, 1997. "Optimal delta-hedging under transactions costs," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1353-1376, June.
    6. Bernard Bensaid & Jean‐Philippe Lesne & Henri Pagès & José Scheinkman, 1992. "Derivative Asset Pricing With Transaction Costs1," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 63-86, April.
    7. Monoyios, Michael, 2004. "Option pricing with transaction costs using a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 889-913, February.
    8. Damgaard, Anders, 2006. "Computation of reservation prices of options with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 30(3), pages 415-444, March.
    9. S. Wang & X. Q. Yang & K. L. Teo, 2006. "Power Penalty Method for a Linear Complementarity Problem Arising from American Option Valuation," Journal of Optimization Theory and Applications, Springer, vol. 129(2), pages 227-254, May.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy Cerqueti & Daniele Marazzina & Marco Ventura, 2016. "Optimal Investment in Research and Development Under Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 296-309, January.
    2. Y. Zhou & S. Wang & X. Yang, 2014. "A penalty approximation method for a semilinear parabolic double obstacle problem," Journal of Global Optimization, Springer, vol. 60(3), pages 531-550, November.
    3. Lesmana, Donny Citra & Wang, Song, 2015. "Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 318-330.
    4. Wen Li & Song Wang, 2014. "A numerical method for pricing European options with proportional transaction costs," Journal of Global Optimization, Springer, vol. 60(1), pages 59-78, September.
    5. Yan, Dong & Lin, Sha & Hu, Zhihao & Yang, Ben-Zhang, 2022. "Pricing American options with stochastic volatility and small nonlinear price impact: A PDE approach," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    6. Lu, Xiaoping & Yan, Dong & Zhu, Song-Ping, 2022. "Optimal exercise of American puts with transaction costs under utility maximization," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    7. Roland Herzog & Karl Kunisch & Jörn Sass, 2013. "Primal-dual methods for the computation of trading regions under proportional transaction costs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 101-130, February.
    8. K. Zhang & K. Teo & M. Swartz, 2014. "A Robust Numerical Scheme For Pricing American Options Under Regime Switching Based On Penalty Method," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 463-483, April.
    9. Pedro Polvora & Daniel Sevcovic, 2021. "Utility indifference Option Pricing Model with a Non-Constant Risk-Aversion under Transaction Costs and Its Numerical Approximation," Papers 2108.12598, arXiv.org.
    10. Song Wang, 2015. "A penalty approach to a discretized double obstacle problem with derivative constraints," Journal of Global Optimization, Springer, vol. 62(4), pages 775-790, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Baccarin, 2019. "Static use of options in dynamic portfolio optimization under transaction costs and solvency constraints," Working papers 063, Department of Economics, Social Studies, Applied Mathematics and Statistics (Dipartimento di Scienze Economico-Sociali e Matematico-Statistiche), University of Torino.
    2. Wen Li & Song Wang, 2014. "A numerical method for pricing European options with proportional transaction costs," Journal of Global Optimization, Springer, vol. 60(1), pages 59-78, September.
    3. Jacques, Sébastien & Lai, Van Son & Soumaré, Issouf, 2011. "Synthetizing a debt guarantee: Super-replication versus utility approach," International Review of Financial Analysis, Elsevier, vol. 20(1), pages 27-40, January.
    4. Lai, Tze Leung & Lim, Tiong Wee, 2009. "Option hedging theory under transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 33(12), pages 1945-1961, December.
    5. Lu, Xiaoping & Yan, Dong & Zhu, Song-Ping, 2022. "Optimal exercise of American puts with transaction costs under utility maximization," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. Monoyios, Michael, 2004. "Option pricing with transaction costs using a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 889-913, February.
    8. Damgaard, Anders, 2003. "Utility based option evaluation with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 27(4), pages 667-700, February.
    9. Siu, Tak Kuen, 2023. "European option pricing with market frictions, regime switches and model uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 233-250.
    10. Perrakis, Stylianos & Lefoll, Jean, 2000. "Option pricing and replication with transaction costs and dividends," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1527-1561, October.
    11. Thomas Poufinas, 2015. "On Transaction-Cost Models in Continuous-Time Markets," IJFS, MDPI, vol. 3(2), pages 1-34, April.
    12. Clewlow, Les & Hodges, Stewart, 1997. "Optimal delta-hedging under transactions costs," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1353-1376, June.
    13. Joao Amaro de Matos & Paula Antao, 2000. "Market illiquidity and the Bid-Ask spread of derivatives," Nova SBE Working Paper Series wp386, Universidade Nova de Lisboa, Nova School of Business and Economics.
    14. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "Hedging Derivative Securities and Incomplete Markets: An (epsilon)-Arbitrage Approach," Operations Research, INFORMS, vol. 49(3), pages 372-397, June.
    15. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
    16. Lesmana, Donny Citra & Wang, Song, 2015. "Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 318-330.
    17. Constantinides, George M. & Perrakis, Stylianos, 2002. "Stochastic dominance bounds on derivatives prices in a multiperiod economy with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1323-1352, July.
    18. Nicola Cantarutti & Jo~ao Guerra & Manuel Guerra & Maria do Ros'ario Grossinho, 2016. "Option pricing in exponential L\'evy models with transaction costs," Papers 1611.00389, arXiv.org, revised Nov 2019.
    19. Oleg Szehr, 2021. "Hedging of Financial Derivative Contracts via Monte Carlo Tree Search," Papers 2102.06274, arXiv.org, revised Apr 2021.
    20. Perrakis, Stylianos & Lefoll, Jean, 2004. "The American put under transactions costs," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 915-935, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:143:y:2009:i:2:d:10.1007_s10957-009-9559-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.