IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v138y2020ics0960077920302812.html
   My bibliography  Save this article

Traveling wave solutions and stability behaviours under advection dominance for singularly perturbed advection-diffusion-reaction processes

Author

Listed:
  • Cosgun, Tahir
  • Sari, Murat

Abstract

In this paper, different traveling wave solutions of the kink type are obtained for significant advection-diffusion-reaction mechanisms such as the singularly perturbed generalized Burgers Huxley and Burgers Fisher equations. To achieve this, a nonlinear transformation and an ansatz method have been utilized. Stability analysis is performed on different types of equations to detect the effects of the coefficients on the stability of the obtained solutions. Particularly under advection dominant cases, the stability of the derived solutions is examined separately. It is observed that especially the coefficient of nonlinearity, and partly one of the reaction coefficients, determine the stability behaviour under advection dominance.

Suggested Citation

  • Cosgun, Tahir & Sari, Murat, 2020. "Traveling wave solutions and stability behaviours under advection dominance for singularly perturbed advection-diffusion-reaction processes," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920302812
    DOI: 10.1016/j.chaos.2020.109881
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920302812
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109881?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hammad, D.A. & El-Azab, M.S., 2015. "2N order compact finite difference scheme with collocation method for solving the generalized Burger’s–Huxley and Burger’s–Fisher equations," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 296-311.
    2. Duan, Yali & Kong, Linghua & Zhang, Rui, 2012. "A lattice Boltzmann model for the generalized Burgers–Huxley equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 625-632.
    3. Hassan, M.M. & Abdel-Razek, M.A. & Shoreh, A.A.-H., 2015. "Explicit exact solutions of some nonlinear evolution equations with their geometric interpretations," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 243-252.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hammad, D.A. & El-Azab, M.S., 2016. "Chebyshev–Chebyshev spectral collocation method for solving the generalized regularized long wave (GRLW) equation," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 228-240.
    2. Karakoç, S. Battal Gazi & Zeybek, Halil, 2016. "Solitary-wave solutions of the GRLW equation using septic B-spline collocation method," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 159-171.
    3. Yang, Xiaojia & Ge, Yongbin & Lan, Bin, 2021. "A class of compact finite difference schemes for solving the 2D and 3D Burgers’ equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 510-534.
    4. Lai, Huilin & Ma, Changfeng, 2014. "A new lattice Boltzmann model for solving the coupled viscous Burgers’ equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 445-457.
    5. Krivovichev, Gerasim V., 2018. "Linear Bhatnagar–Gross–Krook equations for simulation of linear diffusion equation by lattice Boltzmann method," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 102-119.
    6. Li, Qi & Mei, Liquan, 2018. "Local momentum-preserving algorithms for the GRLW equation," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 77-92.
    7. El-Ganaini, Shoukry & Kumar, Hitender, 2020. "A variety of new traveling and localized solitary wave solutions of a nonlinear model describing the nonlinear low- pass electrical transmission lines," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Yang, Xiaojia & Ge, Yongbin & Zhang, Lin, 2019. "A class of high-order compact difference schemes for solving the Burgers’ equations," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 394-417.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920302812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.