Generalized Golden Ratios defined by means
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2014.10.095
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Stakhov, A.P., 2005. "The Generalized Principle of the Golden Section and its applications in mathematics, science, and engineering," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 263-289.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stakhov, Alexey, 2007. "The generalized golden proportions, a new theory of real numbers, and ternary mirror-symmetrical arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 315-334.
- Falcón, Sergio & Plaza, Ángel, 2009. "The metallic ratios as limits of complex valued transformations," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 1-13.
- Büyükkılıç, F. & Demirhan, D., 2009. "Cumulative growth with fibonacci approach, golden section and physics," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 24-32.
- Cristina E. Hretcanu & Mircea Crasmareanu, 2023. "The ( α , p )-Golden Metric Manifolds and Their Submanifolds," Mathematics, MDPI, vol. 11(14), pages 1-13, July.
- Stakhov, Alexey & Rozin, Boris, 2006. "The continuous functions for the Fibonacci and Lucas p-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 1014-1025.
- Stakhov, A.P., 2007. "The “golden” matrices and a new kind of cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 1138-1146.
- Stakhov, A. & Rozin, B., 2006. "The “golden” algebraic equations," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1415-1421.
- Stakhov, Alexey, 2006. "The golden section, secrets of the Egyptian civilization and harmony mathematics," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 490-505.
- Falcón, Sergio & Plaza, Ángel, 2007. "The k-Fibonacci sequence and the Pascal 2-triangle," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 38-49.
- Kocer, E. Gokcen & Tuglu, Naim & Stakhov, Alexey, 2009. "On the m-extension of the Fibonacci and Lucas p-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1890-1906.
- Stakhov, Alexey, 2006. "Fundamentals of a new kind of mathematics based on the Golden Section," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1124-1146.
- Stakhov, Alexey & Rozin, Boris, 2007. "The “golden” hyperbolic models of Universe," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 159-171.
- Adam, Maria & Assimakis, Nicholas & Farina, Alfonso, 2015. "Golden section, Fibonacci sequence and the time invariant Kalman and Lainiotis filters," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 817-831.
- Falcón, Sergio & Plaza, Ángel, 2007. "On the Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1615-1624.
- Kilic, E. & Stakhov, A.P., 2009. "On the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2210-2221.
- Falcón, Sergio & Plaza, Ángel, 2008. "The k-Fibonacci hyperbolic functions," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 409-420.
- Falcon, Sergio & Plaza, Ángel, 2009. "k-Fibonacci sequences modulo m," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 497-504.
- Buyukkilic, F. & Ok Bayrakdar, Z. & Demirhan, D., 2015. "Investigation of cumulative growth process via Fibonacci method and fractional calculus," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 237-244.
- Ilija Tanackov & Ivan Pavkov & Željko Stević, 2020. "The New New-Nacci Method for Calculating the Roots of a Univariate Polynomial and Solution of Quintic Equation in Radicals," Mathematics, MDPI, vol. 8(5), pages 1-18, May.
More about this item
Keywords
Golden Ratio; Homogeneous mean; Power mean; Banach’s fixed point theorem;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:250:y:2015:i:c:p:221-227. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.