IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i7p1175-1179.html
   My bibliography  Save this article

Evaluating the influence of wetland vegetation on chemical residence time in Mississippi Delta drainage ditches

Author

Listed:
  • Kröger, R.
  • Moore, M.T.
  • Locke, M.A.
  • Cullum, R.F.
  • Steinriede Jr., R.W.
  • Testa III, S.
  • Bryant, C.T.
  • Cooper, C.M.

Abstract

The presence of emergent vegetation within channelized aquatic environments has the capacity to provide a number of biological functions as well as alter the hydrology of the system. Vegetation within the channel exerts roughness, drag and friction on flowing water, reducing flow rates, increasing water depths and increasing hydraulic retention time. By increasing the hydraulic retention time, chemical residence time (CRT) is increased, thus improving the potential of pollutant mitigation. The study compared two geomorphologically similar drainage ditches, one vegetated and one non-vegetated to evaluate the effect obligate, in-stream wetland vegetation had on CRT. A fluoride (F-) tracer was amended to both ditches with nutrients and sediments to simulate stormwater runoff event. The measured CRT of the vegetated drainage ditch was at least twice that of the non-vegetated ditch. These results suggest that with the presence of vegetation increasing CRT, chemical removal rates will improve, and as a result increase the possibility of microbial transformation, adsorption, and macrophyte assimilation. By dredging or clear-scraping ditches and removing the vegetative component, farmers and managers alike will increase water flows, decrease CRT and potentially increase pollutant loads into aquatic receiving systems.

Suggested Citation

  • Kröger, R. & Moore, M.T. & Locke, M.A. & Cullum, R.F. & Steinriede Jr., R.W. & Testa III, S. & Bryant, C.T. & Cooper, C.M., 2009. "Evaluating the influence of wetland vegetation on chemical residence time in Mississippi Delta drainage ditches," Agricultural Water Management, Elsevier, vol. 96(7), pages 1175-1179, July.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:7:p:1175-1179
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00071-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kröger, R. & Cooper, C.M. & Moore, M.T., 2008. "A preliminary study of an alternative controlled drainage strategy in surface drainage ditches: Low-grade weirs," Agricultural Water Management, Elsevier, vol. 95(6), pages 678-684, June.
    2. Li, Zhe & Zhang, Juntao, 2001. "Calculation of Field Manning's Roughness Coefficient," Agricultural Water Management, Elsevier, vol. 49(2), pages 153-161, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghanbarian, Behzad & Ebrahimian, Hamed & Hunt, Allen G. & van Genuchten, M. Th., 2018. "Theoretical bounds for the exponent in the empirical power-law advance-time curve for surface flow," Agricultural Water Management, Elsevier, vol. 210(C), pages 208-216.
    2. Rong Tang & Xiugui Wang & Xudong Han & Yihui Yan & Shuang Huang & Jiesheng Huang & Tao Shen & Youzhen Wang & Jia Liu, 2022. "Effects of Combined Main Ditch and Field Ditch Control Measures on Crop Yield and Drainage Discharge in the Northern Huaihe River Plain, Anhui Province, China," Agriculture, MDPI, vol. 12(8), pages 1-25, August.
    3. Bohne, B. & Storchenegger, I.J. & Widmoser, P., 2012. "An easy to use calculation method for weir operations in controlled drainage systems," Agricultural Water Management, Elsevier, vol. 109(C), pages 46-53.
    4. H. Azamathulla & Robert Jarrett, 2013. "Use of Gene-Expression Programming to Estimate Manning’s Roughness Coefficient for High Gradient Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 715-729, February.
    5. Prince Czarnecki, J.M. & Baker, B.H. & Brison, A.M. & Kröger, R., 2014. "Evaluating flood risk and alterations to hydraulic patterns following installation of low-grade weirs in agricultural systems," Agricultural Water Management, Elsevier, vol. 146(C), pages 69-74.
    6. Littlejohn, K.A. & Poganski, B.H. & Kröger, R. & Ramirez-Avila, J.J., 2014. "Effectiveness of low-grade weirs for nutrient removal in an agricultural landscape in the Lower Mississippi Alluvial Valley," Agricultural Water Management, Elsevier, vol. 131(C), pages 79-86.
    7. Zhang, Jian & Yan, Min & Lu, Xin & Wang, Tao, 2024. "Nutrient removal performance from agricultural drainage by strengthening ecological ditches in hilly areas," Agricultural Water Management, Elsevier, vol. 291(C).
    8. Bautista, E. & Clemmens, A.J. & Strelkoff, T.S. & Niblack, M., 2009. "Analysis of surface irrigation systems with WinSRFR--Example application," Agricultural Water Management, Elsevier, vol. 96(7), pages 1162-1169, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:7:p:1175-1179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.