IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v95y2008i6p698-706.html
   My bibliography  Save this article

Adapting to intersectoral transfers in the Zhanghe Irrigation System, China: Part I. In-system storage characteristics

Author

Listed:
  • Roost, N.
  • Cai, X.L.
  • Molden, D.
  • Cui, Y.L.

Abstract

The Zhanghe Irrigation System (ZIS), in Central China, has drawn attention internationally because it managed to sustain its rice production in the face of a dramatic reallocation of water to cities, industries and hydropower uses. Ponds, the small reservoirs ubiquitous in the area, are hypothesized to have been instrumental in this. Ponds are recharged by a combination of return flows from irrigation and runoff from catchment areas within the irrigated perimeter. They provide a flexible, local source of irrigation water to farmers. This paper assesses the storage capacity and some key hydrological properties of ponds in a major canal command within ZIS. Using remote sensing data (Landsat and IKONOS) and an area-volume relationship based on a field survey, we obtained an overall pond storage capacity of 96 mm (per unit irrigated area). A comparative analysis between 1978 and 2001 reveals that part of this capacity results from a very significant development of ponds (particularly in the smaller range of sizes) in the time interval, probably as a response to rapidly declining canal supplies. We developed a high-resolution digital elevation model from 1:10,000 topographic maps to support a GIS-based hydrological analysis. Pond catchments were delineated and found to extensively overlap, forming hydrological cascades of up to 15 units. In a 76-km2 area within the irrigation system, we found an average of close to five 'connected' ponds downstream of each irrigated pixel. This high level of connectivity provides opportunities for multiple reuses of water as it flows along toposequences. A fundamental implication is that field 'losses' such as seepage and percolation do not necessarily represent losses at a larger scale. Such scale effects need to be adequately taken into account to avoid making wrong assumptions about water-saving interventions in irrigation.

Suggested Citation

  • Roost, N. & Cai, X.L. & Molden, D. & Cui, Y.L., 2008. "Adapting to intersectoral transfers in the Zhanghe Irrigation System, China: Part I. In-system storage characteristics," Agricultural Water Management, Elsevier, vol. 95(6), pages 698-706, June.
  • Handle: RePEc:eee:agiwat:v:95:y:2008:i:6:p:698-706
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00025-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loeve, R. & Dong, B. & Zhao, J. H. & Zhang, S. J. & Molden, D., 2001. "Operation of the Zhanghe Irrigation System," Conference Papers h027866, International Water Management Institute.
    2. Mushtaq, Shahbaz & Dawe, David & Hafeez, Mohsin, 2007. "Economic evaluation of small multi-purpose ponds in the Zhanghe irrigation system, China," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 61-70, July.
    3. Sakthivadivel, R. & Fernando, N. & Brewer, J. D., 1997. "Rehabilitation planning for small tanks in cascades: a methodology based on rapid assessment," IWMI Research Reports H021491, International Water Management Institute.
    4. Roost, N. & Cai, X.L. & Turral, H. & Molden, D. & Cui, Y.L., 2008. "Adapting to intersectoral transfers in the Zhanghe Irrigation System, China: Part II: Impacts of in-system storage on water balance and productivity," Agricultural Water Management, Elsevier, vol. 95(6), pages 685-697, June.
    5. Mushtaq, Shahbaz & Dawe, David & Lin, Hong & Moya, Piedad, 2007. "An assessment of collective action for pond management in Zhanghe Irrigation System (ZIS), China," Agricultural Systems, Elsevier, vol. 92(1-3), pages 140-156, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mukherji, Aditi & Facon, T. & Molden, David & Chartres, Colin, 2010. "Growing more food with less water: how can revitalizing Asia\u2019s irrigation help?," Conference Papers h043241, International Water Management Institute.
    2. Li, Yong & Šimůnek, Jirka & Jing, Longfei & Zhang, Zhentin & Ni, Lixiao, 2014. "Evaluation of water movement and water losses in a direct-seeded-rice field experiment using Hydrus-1D," Agricultural Water Management, Elsevier, vol. 142(C), pages 38-46.
    3. Xu, Baoli & Shao, Dongguo & Fang, Longzhang & Yang, Xia & Chen, Shu & Gu, Wenquan, 2019. "Modelling percolation and lateral seepage in a paddy field-bund landscape with a shallow groundwater table," Agricultural Water Management, Elsevier, vol. 214(C), pages 87-96.
    4. Tan, Xuezhi & Shao, Dongguo & Gu, Wenquan & Liu, Huanhuan, 2015. "Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 150(C), pages 67-80.
    5. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    6. Roost, N. & Cai, X.L. & Turral, H. & Molden, D. & Cui, Y.L., 2008. "Adapting to intersectoral transfers in the Zhanghe Irrigation System, China: Part II: Impacts of in-system storage on water balance and productivity," Agricultural Water Management, Elsevier, vol. 95(6), pages 685-697, June.
    7. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    8. Shao, Dongguo & Tan, Xuezhi & Liu, Huanhuan & Yang, Haidong & Xiao, Chun & Yang, Fengshun, 2013. "Performance analysis of on-farm irrigation tanks on agricultural drainage water reuse and treatment," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 1-13.
    9. Dai, Junfeng & Cui, Yuanlai & Cai, Xueliang & Brown, Larry C. & Shang, Yuhui, 2016. "Influence of water management on the water cycle in a small watershed irrigation system based on a distributed hydrologic model," Agricultural Water Management, Elsevier, vol. 174(C), pages 52-60.
    10. Shahbaz Mushtaq, 2012. "Exploring Synergies Between Hardware and Software Interventions on Water Savings in China: Farmers’ Response to Water Usage and Crop Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3285-3300, September.
    11. Chen, Shu & Xu, Jijun & Li, Qingqing & Tan, Xuezhi & Nong, Xizhi, 2019. "A copula-based interval-bistochastic programming method for regional water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 217(C), pages 154-164.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mushtaq, Shahbaz & Dawe, David & Hafeez, Mohsin, 2007. "Economic evaluation of small multi-purpose ponds in the Zhanghe irrigation system, China," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 61-70, July.
    2. Shao, Dongguo & Tan, Xuezhi & Liu, Huanhuan & Yang, Haidong & Xiao, Chun & Yang, Fengshun, 2013. "Performance analysis of on-farm irrigation tanks on agricultural drainage water reuse and treatment," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 1-13.
    3. Dai, Junfeng & Cui, Yuanlai & Cai, Xueliang & Brown, Larry C. & Shang, Yuhui, 2016. "Influence of water management on the water cycle in a small watershed irrigation system based on a distributed hydrologic model," Agricultural Water Management, Elsevier, vol. 174(C), pages 52-60.
    4. Hamideh Noory & Mona Deyhool & Farhad Mirzaei, 2019. "A Simulation-Optimization Model for Conjunctive Use of Canal and Pond in Irrigating Paddy Fields," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1053-1068, February.
    5. Shahbaz Mushtaq, 2012. "Exploring Synergies Between Hardware and Software Interventions on Water Savings in China: Farmers’ Response to Water Usage and Crop Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3285-3300, September.
    6. Chen, Shu & Shao, Dongguo & Tan, Xuezhi & Gu, Wenquan & Lei, Caixiu, 2017. "An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition," Agricultural Water Management, Elsevier, vol. 191(C), pages 98-112.
    7. Mushtaq, Shahbaz & Dawe, David & Lin, Hong & Moya, Piedad, 2007. "An assessment of collective action for pond management in Zhanghe Irrigation System (ZIS), China," Agricultural Systems, Elsevier, vol. 92(1-3), pages 140-156, January.
    8. Mukherji, Aditi & Facon, T. & Molden, David & Chartres, Colin, 2010. "Growing more food with less water: how can revitalizing Asia\u2019s irrigation help?," Conference Papers h043241, International Water Management Institute.
    9. Loeve, R. & Hong Lin & Dong Bin & Mao, G. & Chen, C. D. & Dawe, D. & Barker, R., 2003. "Long term trends in agricultural water productivity and intersectoral water allocations in Zhanghe, Hubei, China and in Kaifeng, Henan, China," IWMI Books, Reports H033358, International Water Management Institute.
    10. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    11. Shangming Jiang & Shaowei Ning & Xiuqing Cao & Juliang Jin & Fan Song & Xianjiang Yuan & Lei Zhang & Xiaoyan Xu & Parmeshwar Udmale, 2019. "Optimal Water Resources Regulation for the Pond Irrigation System Based on Simulation—A Case Study in Jiang-Huai Hilly Regions, China," IJERPH, MDPI, vol. 16(15), pages 1-18, July.
    12. Venot, Jean-Philippe & de Fraiture, Charlotte & Nti Acheampong, Ernest, 2012. "Revisiting dominant notions: a review of costs, performance and institutions of small reservoirs in sub-Saharan Africa," IWMI Research Reports 137587, International Water Management Institute.
    13. Rajesh Nune & Biju George & Pardhasaradhi Teluguntla & Andrew Western, 2014. "Relating Trends in Streamflow to Anthropogenic Influences: A Case Study of Himayat Sagar Catchment, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1579-1595, April.
    14. Kumar, M. Dinesh & Patel, Ankit & Singh, O. P., 2008. "Rainwater harvesting in the water-scarce regions of India: potential and pitfalls," Conference Papers h041809, International Water Management Institute.
    15. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    16. Kanthilanka, H. & Ramilan, T. & Farquharson, R.J. & Weerahewa, J., 2023. "Optimal nitrogen fertilizer decisions for rice farming in a cascaded tank system in Sri Lanka: An analysis using an integrated crop, hydro-nutrient and economic model," Agricultural Systems, Elsevier, vol. 207(C).
    17. Matthew Deitch & Adina Merenlender & Shane Feirer, 2013. "Cumulative Effects of Small Reservoirs on Streamflow in Northern Coastal California Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5101-5118, December.
    18. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    19. Jianxia Chang & Yanbin Kan & Yimin Wang & Qiang Huang & Lei Chen, 2017. "Conjunctive Operation of Reservoirs and Ponds Using a Simulation-Optimization Model of Irrigation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 995-1012, February.
    20. Li, Hongmei & Li, Mingxian, 2010. "Sub-group formation and the adoption of the alternate wetting and drying irrigation method for rice in China," Agricultural Water Management, Elsevier, vol. 97(5), pages 700-706, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:95:y:2008:i:6:p:698-706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.