IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v95y2008i6p685-697.html
   My bibliography  Save this article

Adapting to intersectoral transfers in the Zhanghe Irrigation System, China: Part II: Impacts of in-system storage on water balance and productivity

Author

Listed:
  • Roost, N.
  • Cai, X.L.
  • Turral, H.
  • Molden, D.
  • Cui, Y.L.

Abstract

This paper investigates the impacts of farm ponds in a context of declining supplies in a major canal command within the Zhanghe Irrigation System (ZIS), in Central China. As dam supplies have been diverted to higher-valued uses (hydropower, cities and industry), farmers have responded by constructing small storages within their fields. These farm ponds have given them sufficient flexibility in water supply to practice varying forms of alternate wetting and drying irrigation for rice without compromising yields and incomes. Ponds are recharged by a combination of return flows from irrigation and runoff from catchment areas within the irrigated perimeter. Various scenarios of water supply incorporating the main reservoir, in-system reservoirs, farm ponds and irrigation practices were simulated using the OASIS model. OASIS integrates surface and groundwater flows, and contains a crop growth module to aggregate the impacts of different water management regimes. The modelling and sensitivity analysis show that further reductions in main reservoir supplies will have a negative effect on rice production in dry and average years, and that ponds have played a crucial role in adapting agriculture to reduced canal supplies. The flexibility allowed by the ponds has resulted in increased water productivity, except in high rainfall years, but net depletion has not decreased, as local supplies have substituted for water from the main reservoir. The study demonstrates the importance of properly accounting for return flows and the necessity to understand crop production in relation to the actual depletion of water (as evapotranspiration) within an irrigation system.

Suggested Citation

  • Roost, N. & Cai, X.L. & Turral, H. & Molden, D. & Cui, Y.L., 2008. "Adapting to intersectoral transfers in the Zhanghe Irrigation System, China: Part II: Impacts of in-system storage on water balance and productivity," Agricultural Water Management, Elsevier, vol. 95(6), pages 685-697, June.
  • Handle: RePEc:eee:agiwat:v:95:y:2008:i:6:p:685-697
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00026-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roost, N. & Cai, X.L. & Molden, D. & Cui, Y.L., 2008. "Adapting to intersectoral transfers in the Zhanghe Irrigation System, China: Part I. In-system storage characteristics," Agricultural Water Management, Elsevier, vol. 95(6), pages 698-706, June.
    2. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    3. Hafeez, M.M. & Bouman, B.A.M. & Van de Giesen, N. & Vlek, P., 2007. "Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 81-89, August.
    4. Renault, D. & Hemakumara, M. & Molden, D., 2001. "Importance of water consumption by perennial vegetation in irrigated areas of the humid tropics: evidence from Sri Lanka," Agricultural Water Management, Elsevier, vol. 46(3), pages 215-230, January.
    5. Mushtaq, Shahbaz & Dawe, David & Lin, Hong & Moya, Piedad, 2006. "An assessment of the role of ponds in the adoption of water-saving irrigation practices in the Zhanghe Irrigation System, China," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 100-110, May.
    6. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mukherji, Aditi & Facon, T. & Molden, David & Chartres, Colin, 2010. "Growing more food with less water: how can revitalizing Asia\u2019s irrigation help?," Conference Papers h043241, International Water Management Institute.
    2. Li, Yong & Šimůnek, Jirka & Jing, Longfei & Zhang, Zhentin & Ni, Lixiao, 2014. "Evaluation of water movement and water losses in a direct-seeded-rice field experiment using Hydrus-1D," Agricultural Water Management, Elsevier, vol. 142(C), pages 38-46.
    3. Roost, N. & Cai, X.L. & Molden, D. & Cui, Y.L., 2008. "Adapting to intersectoral transfers in the Zhanghe Irrigation System, China: Part I. In-system storage characteristics," Agricultural Water Management, Elsevier, vol. 95(6), pages 698-706, June.
    4. Tan, Xuezhi & Shao, Dongguo & Gu, Wenquan & Liu, Huanhuan, 2015. "Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 150(C), pages 67-80.
    5. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    6. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    7. Shao, Dongguo & Tan, Xuezhi & Liu, Huanhuan & Yang, Haidong & Xiao, Chun & Yang, Fengshun, 2013. "Performance analysis of on-farm irrigation tanks on agricultural drainage water reuse and treatment," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 1-13.
    8. Dai, Junfeng & Cui, Yuanlai & Cai, Xueliang & Brown, Larry C. & Shang, Yuhui, 2016. "Influence of water management on the water cycle in a small watershed irrigation system based on a distributed hydrologic model," Agricultural Water Management, Elsevier, vol. 174(C), pages 52-60.
    9. Shahbaz Mushtaq, 2012. "Exploring Synergies Between Hardware and Software Interventions on Water Savings in China: Farmers’ Response to Water Usage and Crop Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3285-3300, September.
    10. Chen, Shu & Xu, Jijun & Li, Qingqing & Tan, Xuezhi & Nong, Xizhi, 2019. "A copula-based interval-bistochastic programming method for regional water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 217(C), pages 154-164.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bastiaanssen, W. G. M. & Chandrapala, L., 2003. "Water balance variability across Sri Lanka for assessing agricultural and environmental water use," Agricultural Water Management, Elsevier, vol. 58(2), pages 171-192, February.
    2. Mushtaq, Shahbaz & Maraseni, Tek Narayan & Maroulis, Jerry & Hafeez, Mohsin, 2009. "Energy and water tradeoffs in enhancing food security: A selective international assessment," Energy Policy, Elsevier, vol. 37(9), pages 3635-3644, September.
    3. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    4. Haorui Chen & Zhanyi Gao & Wenzhi Zeng & Jing Liu & Xiao Tan & Songjun Han & Shaoli Wang & Yongqing Zhao & Chengkun Yu, 2017. "Scale Effects of Water Saving on Irrigation Efficiency: Case Study of a Rice-Based Groundwater Irrigation System on the Sanjiang Plain, Northeast China," Sustainability, MDPI, vol. 10(1), pages 1-18, December.
    5. Maraseni, Tek Narayan & Mushtaq, Shahbaz & Hafeez, Mohsin & Maroulis, Jerry, 2010. "Greenhouse gas implications of water reuse in the Upper Pumpanga River Integrated Irrigation System, Philippines," Agricultural Water Management, Elsevier, vol. 97(3), pages 382-388, March.
    6. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    7. Lee, Teang Shui & Haque, M. Aminul & Najim, M.M.M., 2005. "Scheduling the cropping calendar in wet-seeded rice schemes in Malaysia," Agricultural Water Management, Elsevier, vol. 71(1), pages 71-84, January.
    8. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada irrigation district (Spain): I. Sequential assessment and minimization of closing errors," Agricultural Water Management, Elsevier, vol. 102(1), pages 35-45.
    9. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    10. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    11. Venot, Jean-Philippe & Sharma, Bharat R. & Rao, K. V. G. K., 2008. "The lower Krishna Basin trajectory: relationships between basin development and downstream environmental degradation," IWMI Research Reports H041463, International Water Management Institute.
    12. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    13. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    14. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
    15. Dennis Wichelns, 2015. "Water productivity and water footprints are not helpful in determining optimal water allocations or efficient management strategies," Water International, Taylor & Francis Journals, vol. 40(7), pages 1059-1070, November.
    16. Sandhu, Rupinder & Irmak, Suat, 2022. "Effects of subsurface drip-irrigated soybean seeding rates on grain yield, evapotranspiration and water productivity under limited and full irrigation and rainfed conditions," Agricultural Water Management, Elsevier, vol. 267(C).
    17. Ahmad, M.D. & Turral, H. & Nazeer, A., 2009. "Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan," Agricultural Water Management, Elsevier, vol. 96(4), pages 551-564, April.
    18. Cai, Ximing & Yang, Yi-Chen E. & Ringler, Claudia & Zhao, Jianshi & You, Liangzhi, 2011. "Agricultural water productivity assessment for the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 98(8), pages 1297-1306, May.
    19. María Blanco & Benjamin Van Doorslaer & Wolfgang Britz & Heinz-Peter Witzke, 2012. "Exploring the feasibility of integrating water issues into the CAPRI model," JRC Research Reports JRC77058, Joint Research Centre.
    20. Ireneusz Cymes & Ewa Dragańska & Zbigniew Brodziński, 2022. "Potential Possibilities of Using Groundwater for Crop Irrigation in the Context of Climate Change," Agriculture, MDPI, vol. 12(6), pages 1-14, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:95:y:2008:i:6:p:685-697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.