IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v94y2007i1-3p31-42.html
   My bibliography  Save this article

Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the Sao Francisco river basin, Brazil

Author

Listed:
  • Teixeira, A.H. de C.
  • Bastiaanssen, W.G.M.
  • Bassoi, L.H.

Abstract

No abstract is available for this item.

Suggested Citation

  • Teixeira, A.H. de C. & Bastiaanssen, W.G.M. & Bassoi, L.H., 2007. "Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the Sao Francisco river basin, Brazil," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 31-42, December.
  • Handle: RePEc:eee:agiwat:v:94:y:2007:i:1-3:p:31-42
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(07)00195-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bos, M. G. & Burton, M. A. & Molden, David J., 2005. "Irrigation and drainage performance assessment: practical guidelines," IWMI Books, Reports H037064, International Water Management Institute.
    2. Evans, R. G. & Spayd, S. E. & Wample, R. L. & Kroeger, M. W. & Mahan, M. O., 1993. "Water use of Vitis vinifera grapes in Washington," Agricultural Water Management, Elsevier, vol. 23(2), pages 109-124, April.
    3. Molden, David & Oweis, T. Y. & Pasquale, S. & Kijne, Jacob W. & Hanjra, M. A. & Bindraban, P. S. & Bouman, Bas A. M. & Cook, S. & Erenstein, O. & Farahani, H. & Hachum, A. & Hoogeveen, J. & Mahoo, Hen, 2007. "Pathways for increasing agricultural water productivity," Book Chapters,, International Water Management Institute.
    4. Ben-Asher, Jiftah & Tsuyuki, Itaru & Bravdo, Ben-Ami & Sagih, Moshe, 2006. "Irrigation of grapevines with saline water: I. Leaf area index, stomatal conductance, transpiration and photosynthesis," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 13-21, May.
    5. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    6. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arata, Linda & Hauschild, Sofia & Sckokai, Paolo, 2018. "Economic and social impact of grape growing in Northeastern Brazil," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 6(3), May.
    2. Zinkernagel, Jana & Maestre-Valero, Jose. F. & Seresti, Sogol Y. & Intrigliolo, Diego S., 2020. "New technologies and practical approaches to improve irrigation management of open field vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    3. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    4. Pascual Romero Azorín & José García García, 2020. "The Productive, Economic, and Social Efficiency of Vineyards Using Combined Drought-Tolerant Rootstocks and Efficient Low Water Volume Deficit Irrigation Techniques under Mediterranean Semiarid Condit," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    5. Arata, Linda & Hauschild, Sofia & Sckokai, Paolo, 2017. "Socio-economic impact of grape growing in North-eastern Brazil," 2017 Sixth AIEAA Conference, June 15-16, Piacenza, Italy 261264, Italian Association of Agricultural and Applied Economics (AIEAA).
    6. Zhang, Baozhong & Kang, Shaozhong & Li, Fusheng & Tong, Ling & Du, Taisheng, 2010. "Variation in vineyard evapotranspiration in an arid region of northwest China," Agricultural Water Management, Elsevier, vol. 97(11), pages 1898-1904, November.
    7. Cancela, Javier José & Trigo-Córdoba, Emiliano & Martínez, Emma María & Rey, Benjamín Jesús & Bouzas-Cid, Yolanda & Fandiño, María & Mirás-Avalos, José Manuel, 2016. "Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain," Agricultural Water Management, Elsevier, vol. 170(C), pages 99-109.
    8. Er-Raki, S. & Bouras, E. & Rodriguez, J.C. & Watts, C.J. & Lizarraga-Celaya, C. & Chehbouni, A., 2021. "Parameterization of the AquaCrop model for simulating table grapes growth and water productivity in an arid region of Mexico," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Williams, Larry E. & Levin, Alexander D. & Fidelibus, Matthew W., 2022. "Crop coefficients (Kc) developed from canopy shaded area in California vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    10. Bezerra, Bergson G. & da Silva, Bernardo B. & Bezerra, José R.C. & Sofiatti, Valdinei & dos Santos, Carlos A.C., 2012. "Evapotranspiration and crop coefficient for sprinkler-irrigated cotton crop in Apodi Plateau semiarid lands of Brazil," Agricultural Water Management, Elsevier, vol. 107(C), pages 86-93.
    11. Bastidas-Obando, E. & Bastiaanssen, W.G.M. & Jarmain, C., 2017. "Estimation of transpiration fluxes from rainfed and irrigated sugarcane in South Africa using a canopy resistance and crop coefficient model," Agricultural Water Management, Elsevier, vol. 181(C), pages 94-107.
    12. Khader Atroosh & Abdul Wahed Mukred & Ahmed Moustafa, 2013. "Water Requirement of Grape (Vitis vinifera) in the Northern Highlands of Yemen," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 5(4), pages 136-136, March.
    13. Lima, Carlos Eduardo Santos de & Costa, Valéria Sandra de Oliveira & Galvíncio, Josiclêda Domiciano & Silva, Richarde Marques da & Santos, Celso Augusto Guimarães, 2021. "Assessment of automated evapotranspiration estimates obtained using the GP-SEBAL algorithm for dry forest vegetation (Caatinga) and agricultural areas in the Brazilian semiarid region," Agricultural Water Management, Elsevier, vol. 250(C).
    14. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    15. Er-Raki, S. & Rodriguez, J.C. & Garatuza-Payan, J. & Watts, C.J. & Chehbouni, A., 2013. "Determination of crop evapotranspiration of table grapes in a semi-arid region of Northwest Mexico using multi-spectral vegetation index," Agricultural Water Management, Elsevier, vol. 122(C), pages 12-19.
    16. Campos, Isidro & Neale, Christopher M.U. & Calera, Alfonso & Balbontín, Claudio & González-Piqueras, Jose, 2010. "Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.)," Agricultural Water Management, Elsevier, vol. 98(1), pages 45-54, December.
    17. Cai, Ximing & Yang, Yi-Chen E. & Ringler, Claudia & Zhao, Jianshi & You, Liangzhi, 2011. "Agricultural water productivity assessment for the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 98(8), pages 1297-1306, May.
    18. Zhao, Peng & Li, Sien & Li, Fusheng & Du, Taisheng & Tong, Ling & Kang, Shaozhong, 2015. "Comparison of dual crop coefficient method and Shuttleworth–Wallace model in evapotranspiration partitioning in a vineyard of northwest China," Agricultural Water Management, Elsevier, vol. 160(C), pages 41-56.
    19. Knipper, K.R. & Kustas, W.P. & Anderson, M.C. & Nieto, H. & Alfieri, J.G. & Prueger, J.H. & Hain, C.R. & Gao, F. & McKee, L.G. & Alsina, M. Mar & Sanchez, L., 2020. "Using high-spatiotemporal thermal satellite ET retrievals to monitor water use over California vineyards of different climate, vine variety and trellis design," Agricultural Water Management, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muthuwatta, L.P. & Rientjes, T.H.M. & Bos, M.G., 2013. "Strategies to increase wheat production in the water scarce Karkheh River Basin, Iran," Agricultural Water Management, Elsevier, vol. 124(C), pages 1-10.
    2. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "WATPRO: A remote sensing based model for mapping water productivity of wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1628-1636, October.
    3. Haileslassie, Amare & Peden, Don & Gebreselassie, Solomon & Amede, Tilahun & Descheemaeker, Katrien, 2009. "Livestock water productivity in mixed crop-livestock farming systems of the Blue Nile basin: Assessing variability and prospects for improvement," Agricultural Systems, Elsevier, vol. 102(1-3), pages 33-40, October.
    4. Ignacio Lorite & Margarita García-Vila & María-Ascensión Carmona & Cristina Santos & María-Auxiliadora Soriano, 2012. "Assessment of the Irrigation Advisory Services’ Recommendations and Farmers’ Irrigation Management: A Case Study in Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2397-2419, June.
    5. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    6. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    7. Scheierling, Susanne M. & Treguer, David O. & Booker, James F., 2015. "Water Productivity in Agriculture: Looking for Water in the Agricultural Productivity and Efficiency Literature," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205677, Agricultural and Applied Economics Association.
    8. Lecina, S. & Neale, C.M.U. & Merkley, G.P. & Dos Santos, C.A.C., 2011. "Irrigation evaluation based on performance analysis and water accounting at the Bear River Irrigation Project (U.S.A.)," Agricultural Water Management, Elsevier, vol. 98(9), pages 1349-1363, July.
    9. Oweis, Theib & Hachum, Ahmed, 2009. "Optimizing supplemental irrigation: Tradeoffs between profitability and sustainability," Agricultural Water Management, Elsevier, vol. 96(3), pages 511-516, March.
    10. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    11. Mainuddin, Mohammed & Maniruzzaman, Md. & Alam, Md. Mahbubul & Mojid, Mohammad A. & Schmidt, Erik J. & Islam, Md. Towfiqul & Scobie, Michael, 2020. "Water usage and productivity of Boro rice at the field level and their impacts on the sustainable groundwater irrigation in the North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 240(C).
    12. Zwart, Sander J. & Bastiaanssen, Wim G.M., 2007. "SEBAL for detecting spatial variation of water productivity and scope for improvement in eight irrigated wheat systems," Agricultural Water Management, Elsevier, vol. 89(3), pages 287-296, May.
    13. Njuki, Eric & Bravo-Ureta, Boris E., 2016. "Measuring agricultural water productivity using a partial factor productivity approach," 2016 Fifth International Conference, September 23-26, 2016, Addis Ababa, Ethiopia 246948, African Association of Agricultural Economists (AAAE).
    14. Immerzeel, W.W. & Gaur, A. & Zwart, S.J., 2008. "Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment," Agricultural Water Management, Elsevier, vol. 95(1), pages 11-24, January.
    15. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    16. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    17. Dugan, Patrick & Dey, Madan M. & Sugunan, V.V., 2006. "Fisheries and water productivity in tropical river basins: Enhancing food security and livelihoods by managing water for fish," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 262-275, February.
    18. Kumar, M. Dinesh & Singh, O.P. & Samad, Madar & Purohit, Chaitali & Didyala, Malkit Singh, 2009. "Water productivity of irrigated agriculture in India: potential areas for improvement," Book Chapters,, International Water Management Institute.
    19. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    20. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:94:y:2007:i:1-3:p:31-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.