IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v170y2016icp99-109.html
   My bibliography  Save this article

Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain

Author

Listed:
  • Cancela, Javier José
  • Trigo-Córdoba, Emiliano
  • Martínez, Emma María
  • Rey, Benjamín Jesús
  • Bouzas-Cid, Yolanda
  • Fandiño, María
  • Mirás-Avalos, José Manuel

Abstract

Inter-annual climate variability, mainly rainfall temporal distribution, is a critical factor for scheduling irrigation. In order to efficiently manage precision irrigation systems for Vitis vinifera (L.), their effects on plant physiology, and vineyard soils, together with yield and quality parameters, need to be understood. The current study was conducted on two grapevine cultivars from Galicia (NW-Spain), cv. ‘Albariño’ and ‘Godello’, during 2012–2014, in two different Designations of Origin (DO): Rías Baixas and Valdeorras. The treatments were rainfed (R) and surface drip irrigation (DI) in DO Rías Baixas, adding subsurface drip irrigation (SDI) in DO Valdeorras, with four replicates (7 plants each). Irrigation was triggered at fruit set, when midday stem water potential (Ψstem) dropped to −0.5MPa, and stopped 15 days before harvest in DO Valdeorras; but it was managed by the vinegrower in DO Rías Baixas. Different bioclimatic indices were calculated to characterize each season and location. Soil water content and Ψstem were periodically measured to assess vineyard water status. Yield and juice quality attributes were determined. Water productivity indices were calculated to compare locations and cultivars. Differences between DOs were observed regarding bioclimatic indices, which indicated temperate and very cool nights for cv. ‘Godello’. In the case of ‘Albariño’, warmer nights were observed. In DO Valdeorras, the differences between treatments in Ψstem were never higher than −0.19MPa; whereas they were almost null in DO Rías Baixas. Yield parameters showed a worse overall productive performance for the R treatment, with lower yields in 2012 and 2013. Qualitative parameters were stable over the three growing seasons studied. Adjusting irrigation schedules for a given season using Ψstem measurements and considering the phenological stage of the vine might help to obtain homogeneous harvests, both in yield and quality. Water productivity indices related with grape yield and pruning weight showed that, in a temperate climate, vegetative growth has an important weight in vineyard water use.

Suggested Citation

  • Cancela, Javier José & Trigo-Córdoba, Emiliano & Martínez, Emma María & Rey, Benjamín Jesús & Bouzas-Cid, Yolanda & Fandiño, María & Mirás-Avalos, José Manuel, 2016. "Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain," Agricultural Water Management, Elsevier, vol. 170(C), pages 99-109.
  • Handle: RePEc:eee:agiwat:v:170:y:2016:i:c:p:99-109
    DOI: 10.1016/j.agwat.2016.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416300129
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Acevedo-Opazo, C. & Ortega-Farias, S. & Fuentes, S., 2010. "Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 97(7), pages 956-964, July.
    2. Cancela, J.J. & Fandiño, M. & Rey, B.J. & Martínez, E.M., 2015. "Automatic irrigation system based on dual crop coefficient, soil and plant water status for Vitis vinifera (cv Godello and cv Mencía)," Agricultural Water Management, Elsevier, vol. 151(C), pages 52-63.
    3. Teixeira, A.H. de C. & Bastiaanssen, W.G.M. & Bassoi, L.H., 2007. "Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the Sao Francisco river basin, Brazil," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 31-42, December.
    4. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    5. Trigo-Córdoba, Emiliano & Bouzas-Cid, Yolanda & Orriols-Fernández, Ignacio & Mirás-Avalos, José Manuel, 2015. "Effects of deficit irrigation on the performance of grapevine (Vitis vinifera L.) cv. ‘Godello’ and ‘Treixadura’ in Ribeiro, NW Spain," Agricultural Water Management, Elsevier, vol. 161(C), pages 20-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santesteban, L.G. & Miranda, C. & Marín, D. & Sesma, B. & Intrigliolo, D.S. & Mirás-Avalos, J.M. & Escalona, J.M. & Montoro, A. & de Herralde, F. & Baeza, P. & Romero, P. & Yuste, J. & Uriarte, D. & M, 2019. "Discrimination ability of leaf and stem water potential at different times of the day through a meta-analysis in grapevine (Vitis vinifera L.)," Agricultural Water Management, Elsevier, vol. 221(C), pages 202-210.
    2. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    3. Lizama, V. & Pérez-Álvarez, E.P. & Intrigliolo, D.S. & Chirivella, C. & Álvarez, I. & García-Esparza, M.J., 2021. "Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: II. Wine, skins, seeds, and grape aromatic composition," Agricultural Water Management, Elsevier, vol. 256(C).
    4. Serrano, A.S. & Martínez-Gascueña, J. & Chacón-Vozmediano, J.L., 2024. "Variability in water use behavior during drought of different grapevine varieties: Assessment of their regulation of water status and stomatal control," Agricultural Water Management, Elsevier, vol. 291(C).
    5. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2019. "Performance of direct root-zone deficit irrigation on Vitis vinifera L. cv. Cabernet Sauvignon production and water use efficiency in semi-arid southcentral Washington," Agricultural Water Management, Elsevier, vol. 221(C), pages 47-57.
    6. Cancela, J.J. & Fandiño, M. & Rey, B.J. & Dafonte, J. & González, X.P., 2017. "Discrimination of irrigation water management effects in pergola trellis system vineyards using a vegetation and soil index," Agricultural Water Management, Elsevier, vol. 183(C), pages 70-77.
    7. Callau-Beyer, Ana Claudia & Mburu, Martin Mungai & Weßler, Caspar-Friedrich & Amer, Nasser & Corbel, Anne-Laure & Wittnebel, Mareille & Böttcher, Jürgen & Bachmann, Jörg & Stützel, Hartmut, 2024. "Effect of high frequency subsurface drip fertigation on plant growth and agronomic nitrogen use efficiency of red cabbage," Agricultural Water Management, Elsevier, vol. 297(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    2. Williams, Larry E. & Levin, Alexander D. & Fidelibus, Matthew W., 2022. "Crop coefficients (Kc) developed from canopy shaded area in California vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Li, Xinxin & Liu, Hongguang & Li, Jing & He, Xinlin & Gong, Ping & Lin, En & Li, Kaiming & Li, Ling & Binley, Andrew, 2020. "Experimental study and multi–objective optimization for drip irrigation of grapes in arid areas of northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    4. Cancela, J.J. & Fandiño, M. & Rey, B.J. & Dafonte, J. & González, X.P., 2017. "Discrimination of irrigation water management effects in pergola trellis system vineyards using a vegetation and soil index," Agricultural Water Management, Elsevier, vol. 183(C), pages 70-77.
    5. Bassoi, Luís Henrique & de Melo Chaves, Agnaldo Rodrigues & Teixeira, Rafael Pombo, 2021. "Responses of 'Syrah' grapevine to deficit irrigation in the Brazilian semi-arid region," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Inês L. Cabral & Anabela Carneiro & Tiago Nogueira & Jorge Queiroz, 2021. "Regulated Deficit Irrigation and Its Effects on Yield and Quality of Vitis vinifera L., Touriga Francesa in a Hot Climate Area (Douro Region, Portugal)," Agriculture, MDPI, vol. 11(8), pages 1-16, August.
    7. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    8. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    9. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    11. Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).
    12. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    13. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    14. Nikolaos Gourgouletis & Marianna Gkavrou & Evangelos Baltas, 2023. "Comparison of Empirical ETo Relationships with ERA5-Land and In Situ Data in Greece," Geographies, MDPI, vol. 3(3), pages 1-23, August.
    15. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    16. Reza Esmaeili & Rahim Mohammadian & Hossein Heidari Sharif Abad & Ghorban Noor Mohammadi, 2022. "Improving quantity and quality of sugar beet yield using agronomic methods in summer cultivation," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 68(8), pages 347-357.
    17. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    18. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    19. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    20. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:170:y:2016:i:c:p:99-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.