IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v5y2013i4p136.html
   My bibliography  Save this article

Water Requirement of Grape (Vitis vinifera) in the Northern Highlands of Yemen

Author

Listed:
  • Khader Atroosh
  • Abdul Wahed Mukred
  • Ahmed Moustafa

Abstract

Grape is a major fruit crop which occupies 33% of the total area of fruit cultivation in Yemen. Grape vines are cultivated under both irrigated and rainfed production systems. The irrigation practices in grape orchards are traditional with low efficiency due to high losses of water. In order to obtain rapid and reliable results, the comparison of five equations for calculation of evapotranspiration and obtaining the Kc values by utilizing actual evapotranspiration of grape became necessary. Crop water requirement of grape trees in Sawan, Bani Hushaish District in Sana'a Governorate was studied and two methods of irrigation were investigated for two years (2005-2006). The investigated irrigation methods were- bubbler (localized) irrigation and basin irrigation. Results indicated the significant superiority of bubbler irrigation over the basin irrigation. The actual water requirements reached 601 and 736 mm water depth respectively with application efficiency reaching 82.6% and 69.8% respectively. The irrigation water productivity of the bubbler irrigation was significant (3.8 kg/m3) while it was less under basin irrigation (1.8 kg/m3). Results indicated that the average crop coefficient throughout the growing season ranged from 0.42 in the case of using Ivanov equation and 0.75 in the case of Hargreaves. In addition to standard FAO Penman-Monteith equation, the Hargreaves and Blaney-Criddle are the best equations that can be used in determination of crop water requirements and irrigation scheduling of grapes. It was also observed that the highest crop coefficient was recorded in the months of May and June in all treatments.

Suggested Citation

  • Khader Atroosh & Abdul Wahed Mukred & Ahmed Moustafa, 2013. "Water Requirement of Grape (Vitis vinifera) in the Northern Highlands of Yemen," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 5(4), pages 136-136, March.
  • Handle: RePEc:ibn:jasjnl:v:5:y:2013:i:4:p:136
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/22047/15890
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/22047
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Teixeira, A.H. de C. & Bastiaanssen, W.G.M. & Bassoi, L.H., 2007. "Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the Sao Francisco river basin, Brazil," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 31-42, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    2. Williams, Larry E. & Levin, Alexander D. & Fidelibus, Matthew W., 2022. "Crop coefficients (Kc) developed from canopy shaded area in California vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Cai, Ximing & Yang, Yi-Chen E. & Ringler, Claudia & Zhao, Jianshi & You, Liangzhi, 2011. "Agricultural water productivity assessment for the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 98(8), pages 1297-1306, May.
    4. Bastidas-Obando, E. & Bastiaanssen, W.G.M. & Jarmain, C., 2017. "Estimation of transpiration fluxes from rainfed and irrigated sugarcane in South Africa using a canopy resistance and crop coefficient model," Agricultural Water Management, Elsevier, vol. 181(C), pages 94-107.
    5. Lima, Carlos Eduardo Santos de & Costa, Valéria Sandra de Oliveira & Galvíncio, Josiclêda Domiciano & Silva, Richarde Marques da & Santos, Celso Augusto Guimarães, 2021. "Assessment of automated evapotranspiration estimates obtained using the GP-SEBAL algorithm for dry forest vegetation (Caatinga) and agricultural areas in the Brazilian semiarid region," Agricultural Water Management, Elsevier, vol. 250(C).
    6. Er-Raki, S. & Rodriguez, J.C. & Garatuza-Payan, J. & Watts, C.J. & Chehbouni, A., 2013. "Determination of crop evapotranspiration of table grapes in a semi-arid region of Northwest Mexico using multi-spectral vegetation index," Agricultural Water Management, Elsevier, vol. 122(C), pages 12-19.
    7. Campos, Isidro & Neale, Christopher M.U. & Calera, Alfonso & Balbontín, Claudio & González-Piqueras, Jose, 2010. "Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.)," Agricultural Water Management, Elsevier, vol. 98(1), pages 45-54, December.
    8. Pascual Romero Azorín & José García García, 2020. "The Productive, Economic, and Social Efficiency of Vineyards Using Combined Drought-Tolerant Rootstocks and Efficient Low Water Volume Deficit Irrigation Techniques under Mediterranean Semiarid Condit," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    9. Arata, Linda & Hauschild, Sofia & Sckokai, Paolo, 2017. "Socio-economic impact of grape growing in North-eastern Brazil," 2017 Sixth AIEAA Conference, June 15-16, Piacenza, Italy 261264, Italian Association of Agricultural and Applied Economics (AIEAA).
    10. Zhang, Baozhong & Kang, Shaozhong & Li, Fusheng & Tong, Ling & Du, Taisheng, 2010. "Variation in vineyard evapotranspiration in an arid region of northwest China," Agricultural Water Management, Elsevier, vol. 97(11), pages 1898-1904, November.
    11. Cancela, Javier José & Trigo-Córdoba, Emiliano & Martínez, Emma María & Rey, Benjamín Jesús & Bouzas-Cid, Yolanda & Fandiño, María & Mirás-Avalos, José Manuel, 2016. "Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain," Agricultural Water Management, Elsevier, vol. 170(C), pages 99-109.
    12. Er-Raki, S. & Bouras, E. & Rodriguez, J.C. & Watts, C.J. & Lizarraga-Celaya, C. & Chehbouni, A., 2021. "Parameterization of the AquaCrop model for simulating table grapes growth and water productivity in an arid region of Mexico," Agricultural Water Management, Elsevier, vol. 245(C).
    13. Arata, Linda & Hauschild, Sofia & Sckokai, Paolo, 2018. "Economic and social impact of grape growing in Northeastern Brazil," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 6(3), May.
    14. Zinkernagel, Jana & Maestre-Valero, Jose. F. & Seresti, Sogol Y. & Intrigliolo, Diego S., 2020. "New technologies and practical approaches to improve irrigation management of open field vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    15. Bezerra, Bergson G. & da Silva, Bernardo B. & Bezerra, José R.C. & Sofiatti, Valdinei & dos Santos, Carlos A.C., 2012. "Evapotranspiration and crop coefficient for sprinkler-irrigated cotton crop in Apodi Plateau semiarid lands of Brazil," Agricultural Water Management, Elsevier, vol. 107(C), pages 86-93.
    16. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    17. Zhao, Peng & Li, Sien & Li, Fusheng & Du, Taisheng & Tong, Ling & Kang, Shaozhong, 2015. "Comparison of dual crop coefficient method and Shuttleworth–Wallace model in evapotranspiration partitioning in a vineyard of northwest China," Agricultural Water Management, Elsevier, vol. 160(C), pages 41-56.
    18. Knipper, K.R. & Kustas, W.P. & Anderson, M.C. & Nieto, H. & Alfieri, J.G. & Prueger, J.H. & Hain, C.R. & Gao, F. & McKee, L.G. & Alsina, M. Mar & Sanchez, L., 2020. "Using high-spatiotemporal thermal satellite ET retrievals to monitor water use over California vineyards of different climate, vine variety and trellis design," Agricultural Water Management, Elsevier, vol. 241(C).

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:5:y:2013:i:4:p:136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.