IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i15d10.1007_s11269-018-2119-x.html
   My bibliography  Save this article

Canopy Resistance and Actual Evapotranspiration over an Olive Orchard

Author

Listed:
  • Athanasios Margonis

    (National and Kapodistrian University of Athens, Department of Physics)

  • Georgia Papaioannou

    (National and Kapodistrian University of Athens, Department of Physics)

  • Petros Kerkides

    (Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering)

  • Gianna Kitsara

    (National and Kapodistrian University of Athens, Department of Physics)

  • George Bourazanis

    (Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering)

Abstract

Τhis study evaluates the hourly actual evapotranspiration (AΕT), predicted either by the two modified Penman-Monteith models (PM) which take into account the canopy resistance (rc) from the Katerji-Perrier (KP) or Todorovic (TD) models, or the simplified PM model with zero rc, as proposed by Priestley and Taylor (PT). The evaluation is based on comparisons with experimental measurements of AΕT applying the ‘Bowen ratio’ method. Hourly experimental data, of air temperature, humidity, wind speed and radiation balance measurements, taken at a 0.5 ha olive orchard in the rural area of Sparta (37° 04΄ N, 22°05΄ E), during the period from June 2010 up to July 2014, are used. The rc estimated by KP model is parameterized by a semi-empirical approach which requires a simple calibration procedure, while rc from TD model is parameterized using a theoretical approach. For estimating AET from minimum data (air temperature, humidity and radiation balance components) the PT model is also employed, since rc is not required and the aerodynamic term of PM is taken into account in the empirical parameter of the model. The results show that PT and KP models are the most appropriate [Refined Index of Agreement (RIA) equal to 0.89 or 0.88, respectively] followed by the TD model (RIA = 0.78). PT or KP models underestimate AET by 9.3% or 9.8%, respectively, while TD model overestimates AET by 15.0%, increased up to 25.8%, during warm period.

Suggested Citation

  • Athanasios Margonis & Georgia Papaioannou & Petros Kerkides & Gianna Kitsara & George Bourazanis, 2018. "Canopy Resistance and Actual Evapotranspiration over an Olive Orchard," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5007-5026, December.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:15:d:10.1007_s11269-018-2119-x
    DOI: 10.1007/s11269-018-2119-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2119-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2119-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pauwels, Valentijn R.N. & Samson, Roeland, 2006. "Comparison of different methods to measure and model actual evapotranspiration rates for a wet sloping grassland," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 1-24, April.
    2. Er-Raki, S. & Chehbouni, A. & Hoedjes, J. & Ezzahar, J. & Duchemin, B. & Jacob, F., 2008. "Improvement of FAO-56 method for olive orchards through sequential assimilation of thermal infrared-based estimates of ET," Agricultural Water Management, Elsevier, vol. 95(3), pages 309-321, March.
    3. Utset, Angel & Farre, Imma & Martinez-Cob, Antonio & Cavero, Jose, 2004. "Comparing Penman-Monteith and Priestley-Taylor approaches as reference-evapotranspiration inputs for modeling maize water-use under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 66(3), pages 205-219, May.
    4. Alves, Isabel & Santos Pereira, Luis, 2000. "Modelling surface resistance from climatic variables?," Agricultural Water Management, Elsevier, vol. 42(3), pages 371-385, January.
    5. Michelakis, Nic. & Vouyoukalou, E. & Clapaki, G., 1996. "Water use and soil moisture depletion by olive trees under different irrigation conditions," Agricultural Water Management, Elsevier, vol. 29(3), pages 315-325, February.
    6. Allen, Richard G. & Pereira, Luis S. & Howell, Terry A. & Jensen, Marvin E., 2011. "Evapotranspiration information reporting: I. Factors governing measurement accuracy," Agricultural Water Management, Elsevier, vol. 98(6), pages 899-920, April.
    7. Rana, G. & Katerji, N. & Lazzara, P. & Ferrara, R.M., 2012. "Operational determination of daily actual evapotranspiration of irrigated tomato crops under Mediterranean conditions by one-step and two-step models: Multiannual and local evaluations," Agricultural Water Management, Elsevier, vol. 115(C), pages 285-296.
    8. Martínez-Cob, A. & Faci, J.M., 2010. "Evapotranspiration of an hedge-pruned olive orchard in a semiarid area of NE Spain," Agricultural Water Management, Elsevier, vol. 97(3), pages 410-418, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Wei & Sun, Xihuan & Ma, Juanjuan & Guo, Xianghong & Lei, Tao & Li, Ruofan, 2019. "Measurement and simulation of the water storage pit irrigation trees evapotranspiration in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 226(C).
    2. Suelen Costa Faria Martins & Marcos Alex Santos & Gustavo Bastos Lyra & José Leonaldo Souza & Guilherme Bastos Lyra & Iêdo Teodoro & Fábio Freitas Ferreira & Ricardo Araújo Ferreira Júnior & Alexsandr, 2022. "Actual Evapotranspiration for Sugarcane Based on Bowen Ratio-Energy Balance and Soil Water Balance Models with Optimized Crop Coefficients," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4557-4574, September.
    3. Vassilios A. Tsihrintzis & Harris Vangelis, 2018. "Water Resources and Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4813-4817, December.
    4. Yan, Haofang & Yu, Jianjun & Zhang, Chuan & Wang, Guoqing & Huang, Song & Ma, Jiamin, 2021. "Comparison of two canopy resistance models to estimate evapotranspiration for tea and wheat in southeast China," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Cui, Ningbo & He, Ziling & Jiang, Shouzheng & Wang, Mingjun & Yu, Xiuyun & Zhao, Lu & Qiu, Rangjian & Gong, Daozhi & Wang, Yaosheng & Feng, Yu, 2023. "Inter-comparison of the Penman-Monteith type model in modeling the evapotranspiration and its components in an orchard plantation of Southwest China," Agricultural Water Management, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Santos & I. Lorite & R. Allen & M. Tasumi, 2012. "Aerodynamic Parameterization of the Satellite-Based Energy Balance (METRIC) Model for ET Estimation in Rainfed Olive Orchards of Andalusia, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3267-3283, September.
    2. Abou Ali, Asma & Bouchaou, Lhoussaine & Er-Raki, Salah & Hssaissoune, Mohammed & Brouziyne, Youssef & Ezzahar, Jamal & Khabba, Saïd & Chakir, Adnane & Labbaci, Adnane & Chehbouni, Abdelghani, 2023. "Assessment of crop evapotranspiration and deep percolation in a commercial irrigated citrus orchard under semi-arid climate: Combined Eddy-Covariance measurement and soil water balance-based approach," Agricultural Water Management, Elsevier, vol. 275(C).
    3. Ouaadi, Nadia & Jarlan, Lionel & Khabba, Saïd & Le Page, Michel & Chakir, Adnane & Er-Raki, Salah & Frison, Pierre-Louis, 2023. "Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of the FAO-56 crop coefficient?," Agricultural Water Management, Elsevier, vol. 282(C).
    4. Rana, G. & Katerji, N. & Lazzara, P. & Ferrara, R.M., 2012. "Operational determination of daily actual evapotranspiration of irrigated tomato crops under Mediterranean conditions by one-step and two-step models: Multiannual and local evaluations," Agricultural Water Management, Elsevier, vol. 115(C), pages 285-296.
    5. Er-Raki, S. & Chehbouni, A. & Boulet, G. & Williams, D.G., 2010. "Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region," Agricultural Water Management, Elsevier, vol. 97(11), pages 1769-1778, November.
    6. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    7. Srivastava, R.K. & Panda, R.K. & Chakraborty, A. & Halder, D., 2018. "Comparison of actual evapotranspiration of irrigated maize in a sub-humid region using four different canopy resistance based approaches," Agricultural Water Management, Elsevier, vol. 202(C), pages 156-165.
    8. Ayyoub, A. & Er-Raki, S. & Khabba, S. & Merlin, O. & Ezzahar, J. & Rodriguez, J.C. & Bahlaoui, A. & Chehbouni, A., 2017. "A simple and alternative approach based on reference evapotranspiration and leaf area index for estimating tree transpiration in semi-arid regions," Agricultural Water Management, Elsevier, vol. 188(C), pages 61-68.
    9. Diarra, A. & Jarlan, L. & Er-Raki, S. & Le Page, M. & Aouade, G. & Tavernier, A. & Boulet, G. & Ezzahar, J. & Merlin, O. & Khabba, S., 2017. "Performance of the two-source energy budget (TSEB) model for the monitoring of evapotranspiration over irrigated annual crops in North Africa," Agricultural Water Management, Elsevier, vol. 193(C), pages 71-88.
    10. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    11. Yan, Haofang & Yu, Jianjun & Zhang, Chuan & Wang, Guoqing & Huang, Song & Ma, Jiamin, 2021. "Comparison of two canopy resistance models to estimate evapotranspiration for tea and wheat in southeast China," Agricultural Water Management, Elsevier, vol. 245(C).
    12. Cammalleri, C. & Rallo, G. & Agnese, C. & Ciraolo, G. & Minacapilli, M. & Provenzano, G., 2013. "Combined use of eddy covariance and sap flow techniques for partition of ET fluxes and water stress assessment in an irrigated olive orchard," Agricultural Water Management, Elsevier, vol. 120(C), pages 89-97.
    13. Mercedeh Taheri & Abdolmajid Mohammadian & Fatemeh Ganji & Mostafa Bigdeli & Mohsen Nasseri, 2022. "Energy-Based Approaches in Estimating Actual Evapotranspiration Focusing on Land Surface Temperature: A Review of Methods, Concepts, and Challenges," Energies, MDPI, vol. 15(4), pages 1-57, February.
    14. Ortega-Salazar, Samuel & Ortega-Farías, Samuel & Kilic, Ayse & Allen, Richard, 2021. "Performance of the METRIC model for mapping energy balance components and actual evapotranspiration over a superintensive drip-irrigated olive orchard," Agricultural Water Management, Elsevier, vol. 251(C).
    15. Amazirh, Abdelhakim & Er-Raki, Salah & Ojha, Nitu & Bouras, El houssaine & Rivalland, Vincent & Merlin, Olivier & Chehbouni, Abdelghani, 2022. "Assimilation of SMAP disaggregated soil moisture and Landsat land surface temperature to improve FAO-56 estimates of ET in semi-arid regions," Agricultural Water Management, Elsevier, vol. 260(C).
    16. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    17. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    18. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    19. Chehab, Hechmi & Tekaya, Mariem & Mechri, Beligh & Jemai, Abdelmajid & Guiaa, Mohamed & Mahjoub, Zoubeir & Boujnah, Dalenda & Laamari, Salwa & Chihaoui, Badreddine & Zakhama, Houda & Hammami, Mohamed , 2017. "Effect of the Super Absorbent Polymer Stockosorb® on leaf turgor pressure, tree performance and oil quality of olive trees cv. Chemlali grown under field conditions in an arid region of Tunisia," Agricultural Water Management, Elsevier, vol. 192(C), pages 221-231.
    20. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:15:d:10.1007_s11269-018-2119-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.