IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v303y2024ics0378377424003962.html
   My bibliography  Save this article

Water-agriculture-ecology nexus synergetic management based on spatiotemporal equilibrium and water transformation: A case study in Aksu River Basin, China

Author

Listed:
  • Wang, Taishan
  • Su, Xiaoling
  • Wu, Haijiang

Abstract

The temporal variability and spatial heterogeneity characteristics of the water-agriculture-ecology (WAE) nexus system have aggravated the difficulties in its synergetic management. Besides, in the inland river basin, the surface water and groundwater are tightly linked by the combination of canal and well irrigation. To address these issues, a spatiotemporal equilibrium-water transformation based water-agriculture-ecology nexus synergetic management (SEWT-WAE) model was proposed by incorporating a spatio-temporal robust optimization method and linear water transformation model. The SEWT-WAE model was then applied to the Aksu River Basin, an inland river basin of Xinjiang, China. The results indicated that the SEWT-WAE model was highly effective in achieving spatiotemporal equilibrium in groundwater balance and ecological water utilization, as well as in the integrated management of surface water and groundwater across upstream and downstream regions. The optimal synergetic management scheme was obtained based on the coordinated development degree. Compared to the current situation: (i) the irrigation amount provided by the surface water (groundwater) in the Tabei (Tanan) irrigation district was increased (decreased) by 21.4 % (70.2 %); (ii) the irrigated areas of grain crops and gardens were increased by 30.4 % and 20.1 %, respectively, while the irrigated area of cotton was decreased by 19.4 %; (iii) the ecological water utilization of the Populus euphratica forest was increased by 17.81 %. Overall, this study presents a new optimization model for achieving spatiotemporal equilibrium and conjunctive use of surface water and groundwater and provides decision support for WAE nexus synergetic management in the inland river basin.

Suggested Citation

  • Wang, Taishan & Su, Xiaoling & Wu, Haijiang, 2024. "Water-agriculture-ecology nexus synergetic management based on spatiotemporal equilibrium and water transformation: A case study in Aksu River Basin, China," Agricultural Water Management, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:agiwat:v:303:y:2024:i:c:s0378377424003962
    DOI: 10.1016/j.agwat.2024.109061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424003962
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Junlong & Li, Yongping & You, Li & Huang, Guohe & Xu, Xiaomei & Wang, Xiaoya, 2022. "Optimizing effluent trading and risk management schemes considering dual risk aversion for an agricultural watershed," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Gordon, Line J. & Finlayson, C. Max & Falkenmark, Malin, 2010. "Managing water in agriculture for food production and other ecosystem services," Agricultural Water Management, Elsevier, vol. 97(4), pages 512-519, April.
    3. Yan Nie & Chen Yin & Pu Wang & Xingying He & Junjun Cao & Jing Yu, 2022. "Temporal and Spatial Evolution of Eichmann Lake Wetland in Aksu River Basin and Its Response to Ecological Water Supply," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    4. Liangzhen Zang & Yiqing Su, 2019. "Internal Coordinated Development of China’s Urbanization and Its Spatiotemporal Evolution," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
    5. Dehghanipour, Amir Hossein & Schoups, Gerrit & Zahabiyoun, Bagher & Babazadeh, Hossein, 2020. "Meeting agricultural and environmental water demand in endorheic irrigated river basins: A simulation-optimization approach applied to the Urmia Lake basin in Iran," Agricultural Water Management, Elsevier, vol. 241(C).
    6. Jain, Sonal & Ramesh, Dharavath & Trivedi, Munesh C. & Edla, Damodar Reddy, 2023. "Evaluation of metaheuristic optimization algorithms for optimal allocation of surface water and groundwater resources for crop production," Agricultural Water Management, Elsevier, vol. 279(C).
    7. Morteza Ahangari Hassas & Navid Taghizadegan Kalantari & Behnam Mohammadi-Ivatloo & Amin Safari, 2021. "Sustainable Management of the Electrical-Energy–Water–Food Nexus Using Robust Optimization," Sustainability, MDPI, vol. 14(1), pages 1-15, December.
    8. Dehghanipour, Amir Hossein & Zahabiyoun, Bagher & Schoups, Gerrit & Babazadeh, Hossein, 2019. "A WEAP-MODFLOW surface water-groundwater model for the irrigated Miyandoab plain, Urmia lake basin, Iran: Multi-objective calibration and quantification of historical drought impacts," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    9. J. Pablo Ortiz-Partida & Taher Kahil & Tatiana Ermolieva & Yuri Ermoliev & Belize Lane & Samuel Sandoval-Solis & Yoshihide Wada, 2019. "A Two-Stage Stochastic Optimization for Robust Operation of Multipurpose Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3815-3830, September.
    10. Saeid Esmaeili & Amjad Anvari-Moghaddam & Shahram Jadid, 2019. "Optimal Operational Scheduling of Reconfigurable Multi-Microgrids Considering Energy Storage Systems," Energies, MDPI, vol. 12(9), pages 1-23, May.
    11. Min Li & Chao Zhang, 2020. "Two-Stage Stochastic Variational Inequality Arising from Stochastic Programming," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 324-343, July.
    12. John M. Mulvey & Andrzej Ruszczyński, 1995. "A New Scenario Decomposition Method for Large-Scale Stochastic Optimization," Operations Research, INFORMS, vol. 43(3), pages 477-490, June.
    13. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    2. Og[caron]uzsoy, Cemal Berk & Güven, Sibel, 2007. "Robust portfolio planning in the presence of market anomalies," Omega, Elsevier, vol. 35(1), pages 1-6, February.
    3. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2021. "Hybrid stochastic robust optimization and robust optimization for energy planning – A social impact-constrained case study," Applied Energy, Elsevier, vol. 298(C).
    4. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    5. Yan, Shangyao & Tang, Ching-Hui, 2009. "Inter-city bus scheduling under variable market share and uncertain market demands," Omega, Elsevier, vol. 37(1), pages 178-192, February.
    6. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    7. S C H Leung & K K Lai & W-L Ng & Y Wu, 2007. "A robust optimization model for production planning of perishable products," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 413-422, April.
    8. Yan, Shangyao & Tang, Ching-Hui, 2007. "A heuristic approach for airport gate assignments for stochastic flight delays," European Journal of Operational Research, Elsevier, vol. 180(2), pages 547-567, July.
    9. Alizadeh, Morteza & Amiri-Aref, Mehdi & Mustafee, Navonil & Matilal, Sumohon, 2019. "A robust stochastic Casualty Collection Points location problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 965-983.
    10. Mardani Najafabadi, Mostafa & Magazzino, Cosimo & Valente, Donatella & Mirzaei, Abbas & Petrosillo, Irene, 2023. "A new interval meta-goal programming for sustainable planning of agricultural water-land use nexus," Ecological Modelling, Elsevier, vol. 484(C).
    11. Zhao, Yonggan & Ziemba, William T., 2008. "Calculating risk neutral probabilities and optimal portfolio policies in a dynamic investment model with downside risk control," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1525-1540, March.
    12. Tatiana Ermolieva & Petr Havlik & Yuri Ermoliev & Nikolay Khabarov & Michael Obersteiner, 2021. "Robust Management of Systemic Risks and Food-Water-Energy-Environmental Security: Two-Stage Strategic-Adaptive GLOBIOM Model," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    13. Hashem Omrani & Farzane Adabi & Narges Adabi, 2017. "Designing an efficient supply chain network with uncertain data: a robust optimization—data envelopment analysis approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 816-828, July.
    14. Manuel Laguna, 1998. "Applying Robust Optimization to Capacity Expansion of One Location in Telecommunications with Demand Uncertainty," Management Science, INFORMS, vol. 44(11-Part-2), pages 101-110, November.
    15. Lassiter, Kyle & Khademi, Amin & Taaffe, Kevin M., 2015. "A robust optimization approach to volunteer management in humanitarian crises," International Journal of Production Economics, Elsevier, vol. 163(C), pages 97-111.
    16. Shangyao Yan & Ching-Hui Tang, 2008. "An Integrated Framework for Intercity Bus Scheduling Under Stochastic Bus Travel Times," Transportation Science, INFORMS, vol. 42(3), pages 318-335, August.
    17. Govindan, Kannan & Gholizadeh, Hadi, 2021. "Robust network design for sustainable-resilient reverse logistics network using big data: A case study of end-of-life vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    18. Leung, Stephen C.H. & Tsang, Sally O.S. & Ng, W.L. & Wu, Yue, 2007. "A robust optimization model for multi-site production planning problem in an uncertain environment," European Journal of Operational Research, Elsevier, vol. 181(1), pages 224-238, August.
    19. Helga Meier & Nicos Christofides & Gerry Salkin, 2001. "Capital Budgeting Under Uncertainty---An Integrated Approach Using Contingent Claims Analysis and Integer Programming," Operations Research, INFORMS, vol. 49(2), pages 196-206, April.
    20. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:303:y:2024:i:c:s0378377424003962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.