IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v302y2024ics0378377424003068.html
   My bibliography  Save this article

Elevated CO2 alleviates the exacerbation of evapotranspiration rates of grapevine (Vitis vinifera) under elevated temperature

Author

Listed:
  • Martínez-Lüscher, Johann
  • Kozikova, Daria
  • Goicoechea, Nieves
  • Pascual, Inmaculada

Abstract

Climate change is increasing crop water consumption while reducing precipitations in most places where grapevines are grown. This study aimed to quantify whole-plant water consumption of grapevines under climate change factors to determine what are the biggest contributors to changes in evapotranspiration under climate change conditions. Two experiments were carried out: i) Cabernet Sauvignon grafted onto 110 R grown in the temperature gradient greenhouses (TGG) exposed to elevated CO2 (700 µmol mol−1) and/or elevated temperature (+4 °C) and ii) Tempranillo vegetative cuttings grown in the controlled environment greenhouses (CEG) exposed to ambient CO2 and standard temperatures (i.e CA24°C) or elevated CO2 combined with elevated temperature (i.e CE28°C) under cyclic water deficit conditions. In the overall, the combination of elevated CO2 and elevated temperature did not increase pot evapotranspiration, and in the only case this happened, it was mediated by a greater leaf area per plant. There was an interaction in which CO2 compensated for the increase in evapotranspiration induced by elevated temperature. Plants under elevated CO2 and elevated temperature (CETE) had lower stomatal conductance which resulted in similar transpiration rates to plants under ambient CO2 and ambient temperature conditions (CATA) despites the 4 °C increase. Net assimilation was greater under elevated CO2, and thus, instantaneous water use efficiency (WUE). Pot evapotranspiration was correlated to parameters such as leaf area per plant, gas exchange transpiration rates, reference evapotranspiration and plant available water content in the substrate. Pot lysimeters are a good compromise to study whole-plant water consumption rates under controlled conditions. Climate change conditions will likely continue to threat the sustainability of crops due to water shortages, however, our results point out that the interaction between elevated temperature and CO2 should be considered. The sensitivity of plant responses to elevated CO2 could be exploited as a key trait for the adaptation of crops to climate change.

Suggested Citation

  • Martínez-Lüscher, Johann & Kozikova, Daria & Goicoechea, Nieves & Pascual, Inmaculada, 2024. "Elevated CO2 alleviates the exacerbation of evapotranspiration rates of grapevine (Vitis vinifera) under elevated temperature," Agricultural Water Management, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003068
    DOI: 10.1016/j.agwat.2024.108971
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424003068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Fusheng & Kang, Shaozhong & Zhang, Jianhua, 2004. "Interactive effects of elevated CO2, nitrogen and drought on leaf area, stomatal conductance, and evapotranspiration of wheat," Agricultural Water Management, Elsevier, vol. 67(3), pages 221-233, July.
    2. Kizildeniz, T. & Mekni, I. & Santesteban, H. & Pascual, I. & Morales, F. & Irigoyen, J.J., 2015. "Effects of climate change including elevated CO2 concentration, temperature and water deficit on growth, water status, and yield quality of grapevine (Vitis vinifera L.) cultivars," Agricultural Water Management, Elsevier, vol. 159(C), pages 155-164.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nackley, Lloyd L. & Vogt, Kristiina A. & Kim, Soo-Hyung, 2014. "Arundo donax water use and photosynthetic responses to drought and elevated CO2," Agricultural Water Management, Elsevier, vol. 136(C), pages 13-22.
    2. Kizildeniz, T. & Irigoyen, J.J & Pascual, I. & Morales, F., 2018. "Simulating the impact of climate change (elevated CO2 and temperature, and water deficit) on the growth of red and white Tempranillo grapevine in three consecutive growing seasons (2013–2015)," Agricultural Water Management, Elsevier, vol. 202(C), pages 220-230.
    3. Kizildeniz, T. & Pascual, I. & Irigoyen, J.J & Morales, F., 2018. "Using fruit-bearing cuttings of grapevine and temperature gradient greenhouses to evaluate effects of climate change (elevated CO2 and temperature, and water deficit) on the cv. red and white Temprani," Agricultural Water Management, Elsevier, vol. 202(C), pages 299-310.
    4. Fan, Jinjie & Wu, Xun & Yu, Yangliu & Zuo, Qiang & Shi, Jianchu & Halpern, Moshe & Sheng, Jiandong & Jiang, Pingan & Ben-Gal, Alon, 2023. "Characterizing root-water-uptake of wheat under elevated CO2 concentration," Agricultural Water Management, Elsevier, vol. 275(C).
    5. Fraga, H. & García de Cortázar Atauri, I. & Santos, J.A, 2018. "Viticultural irrigation demands under climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 196(C), pages 66-74.
    6. Han, Weihua & Sun, Jiaxing & Zhang, Kui & Mao, Lili & Gao, Lili & Hou, Xuemin & Cui, Ningbo & Kang, Wenhuai & Gong, Daozhi, 2023. "Optimizing drip fertigation management based on yield, quality, water and fertilizer use efficiency of wine grape in North China," Agricultural Water Management, Elsevier, vol. 280(C).
    7. Qiao, Yunzhou & Zhang, Huizhen & Dong, Baodi & Shi, Changhai & Li, Yuxin & Zhai, Hongmei & Liu, Mengyu, 2010. "Effects of elevated CO2 concentration on growth and water use efficiency of winter wheat under two soil water regimes," Agricultural Water Management, Elsevier, vol. 97(11), pages 1742-1748, November.
    8. Iván Francisco García-Tejero & Víctor Hugo Durán-Zuazo, 2022. "Future of Irrigation in Agriculture in Southern Europe," Agriculture, MDPI, vol. 12(6), pages 1-5, June.
    9. Du, Bin & Shukla, M.K. & Yang, Xiaolin & Du, Taisheng, 2023. "Enhanced fruit yield and quality of tomato by photosynthetic bacteria and CO2 enrichment under reduced irrigation," Agricultural Water Management, Elsevier, vol. 277(C).
    10. Phogat, V. & Cox, J.W. & Šimůnek, J., 2018. "Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia," Agricultural Water Management, Elsevier, vol. 201(C), pages 107-117.
    11. Francisco J. Moral & Cristina Aguirado & Virginia Alberdi & Abelardo García-Martín & Luis L. Paniagua & Francisco J. Rebollo, 2022. "Future Scenarios for Viticultural Suitability under Conditions of Global Climate Change in Extremadura, Southwestern Spain," Agriculture, MDPI, vol. 12(11), pages 1-17, November.
    12. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    13. Yishai Netzer & Yedidya Suued & Matanya Harel & Danielle Ferman-Mintz & Elyashiv Drori & Sarel Munitz & Maria Stanevsky & José M. Grünzweig & Aaron Fait & Noa Ohana-Levi & Gil Nir & Gil Harari, 2022. "Forever Young? Late Shoot Pruning Affects Phenological Development, Physiology, Yield and Wine Quality of Vitis vinifera cv. Malbec," Agriculture, MDPI, vol. 12(5), pages 1-22, April.
    14. Cai, Zelin & Bai, Jiaming & Li, Rui & He, Daiwei & Du, Rongcheng & Li, Dayong & Hong, Tingting & Zhang, Zhi, 2023. "Water and nitrogen management scheme of melon based on yield−quality−efficiency matching perspective under CO2 enrichment," Agricultural Water Management, Elsevier, vol. 285(C).
    15. Ohana-Levi, Noa & Mintz, Danielle Ferman & Hagag, Nave & Stern, Yossi & Munitz, Sarel & Friedman-Levi, Yael & Shacham, Nir & Grünzweig, José M. & Netzer, Yishai, 2022. "Grapevine responses to site-specific spatiotemporal factors in a Mediterranean climate," Agricultural Water Management, Elsevier, vol. 259(C).
    16. Ningning Zhao & Xingrong Sun & Shuai Hou & Guohao Chen & He Zhang & Yuxin Han & Jie Zhou & Xiangtao Wang & Zhixin Zhang, 2022. "N Addition Mitigates Water Stress via Different Photosynthesis and Water Traits for Three Native Plant Species in the Qinghai–Tibet Plateau," Agriculture, MDPI, vol. 12(11), pages 1-21, November.
    17. Manderscheid, Remy & Dier, Markus & Erbs, Martin & Sickora, Jan & Weigel, Hans-Joachim, 2018. "Nitrogen supply – A determinant in water use efficiency of winter wheat grown under free air CO2 enrichment," Agricultural Water Management, Elsevier, vol. 210(C), pages 70-77.
    18. Marcelo F. Pompelli & Carlos A. Espitia-Romero & Juán de Diós Jaraba-Navas & Luis Alfonso Rodriguez-Paez & Alfredo Jarma-Orozco, 2022. "Stevia rebaudiana under a CO 2 Enrichment Atmosphere: Can CO 2 Enrichment Overcome Stomatic, Mesophilic and Biochemical Barriers That Limit Photosynthesis?," Sustainability, MDPI, vol. 14(21), pages 1-33, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.