Author
Listed:
- Ding, Dianyuan
- Yang, Zijie
- Wu, Lihong
- Zhao, Ying
- Zhang, Xi
- Chen, Xiaoping
- Feng, Hao
- Zhang, Chao
- Wendroth, Ole
Abstract
Crop yields are related to N fertilizer management, and also depend on local precipitation. Varying precipitation levels with long-term meteorological data have not been considered to optimize nitrogen (N) strategies in previous studies on the Loess Plateau of China. In this study, Root Zone Water Quality Model 2 (RZWQM2) was calibrated and validated using data from multi-year experiments and used to assess and optimize N management strategies for winter wheat cultivation. Results showed that the basal dressing fertilizer with 120 kg N ha-1 together with the topdressing of 67–77 kg N ha-1 was recommended in regions with 443 mm average annual precipitation. For those with 364 mm and 290 mm average annual precipitation, the basal dressing fertilizer with 90 kg N ha-1 together with the topdressing of 67–77 kg N ha-1 and the basal dressing with 90 kg N ha-1 together with the topdressing fertilizer of 13–23 kg N ha-1 were recommended, respectively. Compared with farmers’ practice (i.e., the single basal dressing), although decreasing the total rate by 12–18 kg N ha-1, the optimized N strategies (i.e., the basal fertilizer together with one-time topdressing) can effectively promote grain N uptake, nitrogen harvest index, and agronomic efficiency of N. It also maintained similar grain yield, evapotranspiration, and crop water productivity. The minimum precipitation threshold was around 300 mm, where the topdressing N fertilizer had little influence on grain yield, evapotranspiration, and grain N uptake. Additionally, the largest advantage of optimized N strategies was saving N fertilizer and reducing the environment footprint of wheat production. However, the crop production under the optimized N strategies was more sensitive to the precipitation variation than that under farmers’ practice. Thus, if climate continues to change following historical data, greater harvest fluctuations are expected under optimized N strategies. To cope with the evolving climate change, optimized N strategies should be integrated with other management measures for smallholder farming households on the Loess Plateau.
Suggested Citation
Ding, Dianyuan & Yang, Zijie & Wu, Lihong & Zhao, Ying & Zhang, Xi & Chen, Xiaoping & Feng, Hao & Zhang, Chao & Wendroth, Ole, 2024.
"Optimizing nitrogen-fertilizer management by using RZWQM2 with consideration of precipitation can enhance nitrogen utilization on the Loess Plateau,"
Agricultural Water Management, Elsevier, vol. 299(C).
Handle:
RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424002257
DOI: 10.1016/j.agwat.2024.108890
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424002257. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.