IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v295y2024ics0378377424000970.html
   My bibliography  Save this article

Genotypic responses to phosphorus and water management in winter wheat: Strategies to increase resource use efficiency and productivity

Author

Listed:
  • Meier, Sebastián
  • Campos, Pedro
  • Morales, Arturo
  • Jobet, Claudio
  • López-Olivari, Rafael
  • Palma-Millanao, Rubén
  • Matus, Iván
  • Aponte, Humberto
  • Cartes, Paula
  • Khan, Naser
  • Lavanderos, Laura
  • Seguel, Alex

Abstract

The phosphorus (P) addition can be helpful in the mitigation of the adverse effects of water deficit stress. However, the efficiency of wheat in utilizing both components has not been assessed in field conditions. This research aims to assess the effects of P and water addition on phosphorus use efficiency (PUE) and water productivity (WP) in field conditions for select wheat cultivars co-adapted to climate-induced agronomic challenges. Three wheat cultivars were selected based on their PUE and water WP from a previous experiment. The trials were conducted in field conditions over two consecutive years, from 2020 to 2021 (Season 1) and 2021–2022 (Season 2). The plants were grown on an andisol with a soil P concentration of 10 mg P kg−1 and 30 mg P kg−1. Two irrigation treatments were imposed: Well-watered (+W) and dryland (-W). The plants were sampled at three stages: tillering (Z25), anthesis (Z65), and ripening (Z95). At the end of the phenological cycle, grain yield components, grain yield, grain quality, PUE, and WP were evaluated. Phosphorus addition promotes plant growth, especially in the early vegetative stages, by enhancing tiller development and nutrient and water uptake. These effects were critical during the anthesis and ripening stages, enhancing yield components and higher grain production. Differential responses were observed across cultivars, underscoring the genotype-specificity in PUE and WP. Seasonal water deficit stress modulated these effects, highlighting a more complex genotype-environment-nutrient interaction. The water addition promoted PUE and WP, suggesting a synergy between the two components. Among the cultivars, Chevignon outperformed in grain yield, PUE, and WP. However, while phosphorus, water, and environmental factors influenced grain quality, the genetic background of the cultivar was the primary determinant of these components. This study advocates for implementing individual nutrient management strategies tailored to the specific cultivar and adaptable to environmental conditions under climate change.

Suggested Citation

  • Meier, Sebastián & Campos, Pedro & Morales, Arturo & Jobet, Claudio & López-Olivari, Rafael & Palma-Millanao, Rubén & Matus, Iván & Aponte, Humberto & Cartes, Paula & Khan, Naser & Lavanderos, Laura &, 2024. "Genotypic responses to phosphorus and water management in winter wheat: Strategies to increase resource use efficiency and productivity," Agricultural Water Management, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424000970
    DOI: 10.1016/j.agwat.2024.108762
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000970
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roberts, Terry L. & Johnston, A. Edward, 2015. "Phosphorus use efficiency and management in agriculture," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 275-281.
    2. Christine Alewell & Bruno Ringeval & Cristiano Ballabio & David A. Robinson & Panos Panagos & Pasquale Borrelli, 2020. "Global phosphorus shortage will be aggravated by soil erosion," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," IWMI Books, Reports H046807, International Water Management Institute.
    4. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," Book Chapters,, International Water Management Institute.
    5. Meena, Raj Pal & Karnam, Venkatesh & R, Sendhil & Rinki, & Sharma, R.K. & Tripathi, S.C. & Singh, Gyanendra Pratap, 2019. "Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    6. Meier, Sebastián & Moore, Francisca & Morales, Arturo & Jobet, Claudio & López-Olivari, Rafael & Aponte, Humberto & Cartes, Paula & Campos, Pedro & Khan, Naser, 2021. "Interactive role between phosphorus utilization efficiency and water use efficiency. A tool to categorize wheats co-adapted to water and phosphorus limiting conditions," Agricultural Water Management, Elsevier, vol. 248(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meier, Sebastián & Morales, Arturo & López-Olivari, Rafael & Matus, Iván & Aponte, Humberto & de Souza Campos, Pedro & Khan, Naser & Cartes, Paula & Meriño-Gergichevich, Cristian & Castillo, Dalma & S, 2022. "Synergistic role between phosphorus and water use efficiency in spring wheat genotypes," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Mazouz, L & Boussaa, A & Kentour, A, 2024. "The Effect Of Phosphorus Utilization Efficiency On Durum Wheat Cultivars Under Semi-Arid Environmental Conditions," African Journal of Food, Agriculture, Nutrition and Development (AJFAND), African Journal of Food, Agriculture, Nutrition and Development (AJFAND), vol. 24(2), January.
    3. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    4. Holden, Petra B. & Ziervogel, Gina & Hoffman, M. Timm & New, Mark G., 2021. "Transition from subsistence grazing to nature-based recreation: A nuanced view of land abandonment in a mountain social-ecological system, southwestern Cape, South Africa," Land Use Policy, Elsevier, vol. 105(C).
    5. Sara Soares & Daniela Terêncio & Luís Fernandes & João Machado & Fernando A.L. Pacheco, 2019. "The Potential of Small Dams for Conjunctive Water Management in Rural Municipalities," IJERPH, MDPI, vol. 16(7), pages 1-17, April.
    6. Aijun Guo & Daiwei Jiang & Fanglei Zhong & Xiaojiang Ding & Xiaoyu Song & Qingping Cheng & Yongnian Zhang & Chunlin Huang, 2019. "Prediction of Technological Change under Shared Socioeconomic Pathways and Regional Differences: A Case Study of Irrigation Water Use Efficiency Changes in Chinese Provinces," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    7. Agnieszka Starzyk & Janusz Marchwiński & Eliza Maciejewska & Piotr Bujak & Kinga Rybak-Niedziółka & Magdalena Grochulska-Salak & Zdzisław Skutnik, 2023. "Resilience in Urban and Architectural Design—The Issue of Sustainable Development for Areas Associated with an Embankment," Sustainability, MDPI, vol. 15(11), pages 1-25, June.
    8. Abdulazeez Hudu Wudil & Asghar Ali & Khalid Mushtaq & Sajjad Ahmad Baig & Magdalena Radulescu & Piotr Prus & Muhammad Usman & László Vasa, 2023. "Water Use Efficiency and Productivity of Irrigated Rice Cultivation in Nigeria: An Application of the Stochastic Frontier Approach," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    9. Çetin, Oner & Kara, Abdurrahman, 2019. "Assesment of water productivity using different drip irrigation systems for cotton," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    10. Uygan, Demet & Cetin, Oner & Alveroglu, Volkan & Sofuoglu, Aytug, 2021. "Improvement of water saving and economic productivity based on quotation with sugar content of sugar beet using linear move sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 255(C).
    11. Bwambale, Erion & Abagale, Felix K. & Anornu, Geophrey K., 2022. "Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review," Agricultural Water Management, Elsevier, vol. 260(C).
    12. Mbava, N. & Mutema, M. & Zengeni, R. & Shimelis, H. & Chaplot, V., 2020. "Factors affecting crop water use efficiency: A worldwide meta-analysis," Agricultural Water Management, Elsevier, vol. 228(C).
    13. Yin Su & Qifang Zheng & Shenghai Liao, 2022. "Spatio-Temporal Characteristics of Water Ecological Footprint and Countermeasures for Water Sustainability in Japan," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
    14. Georgios Bartzas & Konstantinos Komnitsas, 2020. "Environmental Risk Assessment in Agriculture: The Example of Pistacia vera L. Cultivation in Greece," Sustainability, MDPI, vol. 12(14), pages 1-20, July.
    15. Nguyen Bich Hong & Mitsuyasu Yabe, 2017. "Improvement in irrigation water use efficiency: a strategy for climate change adaptation and sustainable development of Vietnamese tea production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1247-1263, August.
    16. Mir, R. & Azizyan, G. & Massah, A. & Gohari, A., 2022. "Fossil water: Last resort to resolve long-standing water scarcity?," Agricultural Water Management, Elsevier, vol. 261(C).
    17. Maksym Łaszewski & Michał Fedorczyk & Sylwia Gołaszewska & Zuzanna Kieliszek & Paulina Maciejewska & Jakub Miksa & Wiktoria Zacharkiewicz, 2021. "Land Cover Effects on Selected Nutrient Compounds in Small Lowland Agricultural Catchments," Land, MDPI, vol. 10(2), pages 1-20, February.
    18. Silva, Alberto do Nascimento & Ramos, Maria Lucrecia Gerosa & Ribeiro, Walter Quadros & de Alencar, Ernandes Rodrigues & da Silva, Patrícia Carvalho & de Lima, Cristiane Andrea & Vinson, Christina Cle, 2020. "Water stress alters physical and chemical quality in grains of common bean, triticale and wheat," Agricultural Water Management, Elsevier, vol. 231(C).
    19. Nguyen Hong Duc & Pankaj Kumar & Pham Phuong Lan & Tonni Agustiono Kurniawan & Khaled Mohamed Khedher & Ali Kharrazi & Osamu Saito & Ram Avtar, 2023. "Hydrochemical indices as a proxy for assessing land-use impacts on water resources: a sustainable management perspective and case study of Can Tho City, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2573-2615, July.
    20. Md. Anwar Hossain & S. M. Shahinul Islam & Md. Mahmodol Hasan, 2023. "Changes in Soil Properties with Combined Use of Probiotic Cultures and Organic Farming Practices in Degraded Soils of Bangladesh," Sustainability, MDPI, vol. 15(5), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424000970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.