IDEAS home Printed from https://ideas.repec.org/a/ags/ajfand/340625.html
   My bibliography  Save this article

The Effect Of Phosphorus Utilization Efficiency On Durum Wheat Cultivars Under Semi-Arid Environmental Conditions

Author

Listed:
  • Mazouz, L
  • Boussaa, A
  • Kentour, A

Abstract

Faced with the high cost of phosphate fertilisers in several African countries, including Algeria, and in order to better select varieties according to their fertiliser use efficiency, this study was proposed. The goal of the study was to determine how “variety” impacts durum wheat's capacity to utilize phosphorus effectively and to try to pinpoint the agromorphological factors that contribute to this efficiency so that they can be taken into consideration when choosing which varieties to sow in semi-arid environments. The experimental setup consisted of a split plot with two investigated factors and three repetitions, with the main plot receiving the phosphate treatment while the sub plot receives the variety. The trial set up consisted of 11 durum wheat varieties, which were cultivated over two years successively. The PUE of the fertiliser, provided in 46% triple superphosphate (TSP) granules, and agro-morphological parameters like aerial biomass, plant height, grain yield and yield components were determined. The findings demonstrated that triple superphosphate, a type of phosphorus fertilizer, increases grain yield by between 40 and 60% for all varieties examined as compared to the phosphorusfree control at the average dose employed in this field trial, or 20 kg P2O5.ha-1. This increase in yield is due to an increase: from 20 to 22% in the number of ears per m², 41.5% in the number of grains per ear, and 9% in the average weight of the grain. The PUE is strongly correlated to the yield components (Number of ears per square meter- NEM, Number of grains per ear- NGE, thousand grain weight- TGW and Yield) but also to the height at heading (r=0.86) and dry matter (r=0.85). Phosphorus use efficiency is also strongly correlated to flag leaf length and width as well as leaf area. Also, that genotypes with higher weight of thousand grains (WTG) showed better use of available phosphorus. The principal component analysis (PCA) confirms that the efficiency of phosphorus use by the varieties tested explains a large portion of the variation noted in these varieties. This genetic variation in PUE was associated with plant height and phosphorus content of the sown grains. These results could be of a significant impact in improving rainfed durum wheat productivity in semi-arid areas and preserving the environment as well.

Suggested Citation

  • Mazouz, L & Boussaa, A & Kentour, A, 2024. "The Effect Of Phosphorus Utilization Efficiency On Durum Wheat Cultivars Under Semi-Arid Environmental Conditions," African Journal of Food, Agriculture, Nutrition and Development (AJFAND), African Journal of Food, Agriculture, Nutrition and Development (AJFAND), vol. 24(2), January.
  • Handle: RePEc:ags:ajfand:340625
    DOI: 10.22004/ag.econ.340625
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/340625/files/Mazouz.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.340625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Meier, Sebastián & Moore, Francisca & Morales, Arturo & Jobet, Claudio & López-Olivari, Rafael & Aponte, Humberto & Cartes, Paula & Campos, Pedro & Khan, Naser, 2021. "Interactive role between phosphorus utilization efficiency and water use efficiency. A tool to categorize wheats co-adapted to water and phosphorus limiting conditions," Agricultural Water Management, Elsevier, vol. 248(C).
    2. Roberts, Terry L. & Johnston, A. Edward, 2015. "Phosphorus use efficiency and management in agriculture," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 275-281.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meier, Sebastián & Morales, Arturo & López-Olivari, Rafael & Matus, Iván & Aponte, Humberto & de Souza Campos, Pedro & Khan, Naser & Cartes, Paula & Meriño-Gergichevich, Cristian & Castillo, Dalma & S, 2022. "Synergistic role between phosphorus and water use efficiency in spring wheat genotypes," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Meier, Sebastián & Campos, Pedro & Morales, Arturo & Jobet, Claudio & López-Olivari, Rafael & Palma-Millanao, Rubén & Matus, Iván & Aponte, Humberto & Cartes, Paula & Khan, Naser & Lavanderos, Laura &, 2024. "Genotypic responses to phosphorus and water management in winter wheat: Strategies to increase resource use efficiency and productivity," Agricultural Water Management, Elsevier, vol. 295(C).
    3. Md. Anwar Hossain & S. M. Shahinul Islam & Md. Mahmodol Hasan, 2023. "Changes in Soil Properties with Combined Use of Probiotic Cultures and Organic Farming Practices in Degraded Soils of Bangladesh," Sustainability, MDPI, vol. 15(5), pages 1-14, March.
    4. Scholz, Roland W. & Wellmer, Friedrich-Wilhelm, 2015. "Losses and use efficiencies along the phosphorus cycle – Part 2: Understanding the concept of efficiency," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 259-274.
    5. Luo, Zhibo & Ma, Shujie & Hu, Shanying & Chen, Dingjiang, 2017. "Towards the sustainable development of the regional phosphorus resources industry in China: A system dynamics approach," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 186-197.
    6. Rakhwe Kama & Yuan Liu & Jibin Song & Abdoul Kader Mounkaila Hamani & Shouqiang Zhao & Siyi Li & Sekouna Diatta & Fengxia Yang & Zhongyang Li, 2023. "Treated Livestock Wastewater Irrigation Is Safe for Maize ( Zea mays ) and Soybean ( Glycine max ) Intercropping System Considering Heavy Metals Migration in Soil–Plant System," IJERPH, MDPI, vol. 20(4), pages 1-16, February.

    More about this item

    Keywords

    Crop Production/Industries;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ajfand:340625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://www.ajfand.net/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.