IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v263y2022ics0378377422000282.html
   My bibliography  Save this article

Synergistic role between phosphorus and water use efficiency in spring wheat genotypes

Author

Listed:
  • Meier, Sebastián
  • Morales, Arturo
  • López-Olivari, Rafael
  • Matus, Iván
  • Aponte, Humberto
  • de Souza Campos, Pedro
  • Khan, Naser
  • Cartes, Paula
  • Meriño-Gergichevich, Cristian
  • Castillo, Dalma
  • Seguel, Alex

Abstract

It is well known that phosphorus (P) addition helps mitigate the adverse effects of water deficit stress on plants. However, the efficiency of spring wheat genotypes in the use of both components has not been addressed. The objective of this study was to evaluate the combined effect of P and water limiting conditions over phosphorus use efficiency (PUE) and water use efficiency (WUE) to categorize different spring wheat genotypes. Eight spring wheat genotypes were selected based on their yield tolerance index score (YTI) obtained from a previous screening of 384 wheat genotypes. They were evaluated for their ability to use P and water. Plants were grown under semi-controlled conditions on an Andisol with soil P-concentration of 3.4 mg P kg−1 (-P), which was enriched to 30 mg P kg−1 (+P). Irrigation was applied at two levels: well-watered (+W) and 30% +W (water-stressed, -W). Wheat was grown until the end of its phenological cycle. The P and water scarcity produced a delay in wheat development, especially in the first vegetative stages. Genotypic differences in growth, development, P accumulation, and yield were observed in response to P and water limiting conditions. The lowest performance in plant growth and grain yield was regarded when the P and water restrictions were applied. However, differences were observed in terms of PUE and WUE. In this sense, spring wheat genotypes were grouped into three and four classes for PUE and WUE, respectively. The most efficient genotype for all the conditions was “QUP2418”, which obtained the highest score in the consolidated PUE and WUE ranking. On the contrary, “FONTAGRO 92″ and “F6CL091337″ were the most inefficient genotypes. Strong correlations were observed between PUE components and WUE, enabling the future selection of co-adapted wheat genotypes efficient in the use of P and water.

Suggested Citation

  • Meier, Sebastián & Morales, Arturo & López-Olivari, Rafael & Matus, Iván & Aponte, Humberto & de Souza Campos, Pedro & Khan, Naser & Cartes, Paula & Meriño-Gergichevich, Cristian & Castillo, Dalma & S, 2022. "Synergistic role between phosphorus and water use efficiency in spring wheat genotypes," Agricultural Water Management, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:agiwat:v:263:y:2022:i:c:s0378377422000282
    DOI: 10.1016/j.agwat.2022.107481
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422000282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107481?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tron, Stefania & Bodner, Gernot & Laio, Francesco & Ridolfi, Luca & Leitner, Daniel, 2015. "Can diversity in root architecture explain plant water use efficiency? A modeling study," Ecological Modelling, Elsevier, vol. 312(C), pages 200-210.
    2. Roberts, Terry L. & Johnston, A. Edward, 2015. "Phosphorus use efficiency and management in agriculture," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 275-281.
    3. Meena, Raj Pal & Karnam, Venkatesh & R, Sendhil & Rinki, & Sharma, R.K. & Tripathi, S.C. & Singh, Gyanendra Pratap, 2019. "Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Meena, Raj Pal & Karnam, Venkatesh & Tripathi, S.C. & Jha, Ankita & Sharma, R.K. & Singh, G.P., 2019. "Irrigation management strategies in wheat for efficient water use in the regions of depleting water resources," Agricultural Water Management, Elsevier, vol. 214(C), pages 38-46.
    5. Meier, Sebastián & Moore, Francisca & Morales, Arturo & Jobet, Claudio & López-Olivari, Rafael & Aponte, Humberto & Cartes, Paula & Campos, Pedro & Khan, Naser, 2021. "Interactive role between phosphorus utilization efficiency and water use efficiency. A tool to categorize wheats co-adapted to water and phosphorus limiting conditions," Agricultural Water Management, Elsevier, vol. 248(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meier, Sebastián & Campos, Pedro & Morales, Arturo & Jobet, Claudio & López-Olivari, Rafael & Palma-Millanao, Rubén & Matus, Iván & Aponte, Humberto & Cartes, Paula & Khan, Naser & Lavanderos, Laura &, 2024. "Genotypic responses to phosphorus and water management in winter wheat: Strategies to increase resource use efficiency and productivity," Agricultural Water Management, Elsevier, vol. 295(C).
    2. Mazouz, L & Boussaa, A & Kentour, A, 2024. "The Effect Of Phosphorus Utilization Efficiency On Durum Wheat Cultivars Under Semi-Arid Environmental Conditions," African Journal of Food, Agriculture, Nutrition and Development (AJFAND), African Journal of Food, Agriculture, Nutrition and Development (AJFAND), vol. 24(2), January.
    3. Meier, Sebastián & Moore, Francisca & Morales, Arturo & Jobet, Claudio & López-Olivari, Rafael & Aponte, Humberto & Cartes, Paula & Campos, Pedro & Khan, Naser, 2021. "Interactive role between phosphorus utilization efficiency and water use efficiency. A tool to categorize wheats co-adapted to water and phosphorus limiting conditions," Agricultural Water Management, Elsevier, vol. 248(C).
    4. Meena, Raj Pal & Karnam, Venkatesh & R, Sendhil & Rinki, & Sharma, R.K. & Tripathi, S.C. & Singh, Gyanendra Pratap, 2019. "Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    5. Silva, Alberto do Nascimento & Ramos, Maria Lucrecia Gerosa & Ribeiro, Walter Quadros & de Alencar, Ernandes Rodrigues & da Silva, Patrícia Carvalho & de Lima, Cristiane Andrea & Vinson, Christina Cle, 2020. "Water stress alters physical and chemical quality in grains of common bean, triticale and wheat," Agricultural Water Management, Elsevier, vol. 231(C).
    6. Anantha, K.H. & Garg, Kaushal K. & Barron, Jennie & Dixit, Sreenath & Venkataradha, A. & Singh, Ramesh & Whitbread, Anthony M., 2021. "Impact of best management practices on sustainable crop production and climate resilience in smallholder farming systems of South Asia," Agricultural Systems, Elsevier, vol. 194(C).
    7. Md. Anwar Hossain & S. M. Shahinul Islam & Md. Mahmodol Hasan, 2023. "Changes in Soil Properties with Combined Use of Probiotic Cultures and Organic Farming Practices in Degraded Soils of Bangladesh," Sustainability, MDPI, vol. 15(5), pages 1-14, March.
    8. Xiaoli, Niu & Hanmi, Zhou & Xiukang, Wang & Tiantian, Hu & Puyu, Feng & Ting, Li & Na, Zhao & Dongxue, Yin, 2020. "Changes in root hydraulic conductance in relation to the overall growth response of maize seedlings to partial root-zone nitrogen application," Agricultural Water Management, Elsevier, vol. 229(C).
    9. Su, Han & Sun, Hongyong & Dong, Xinliang & Chen, Pei & Zhang, Xuejia & Tian, Liu & Liu, Xiaojing & Wang, Jintao, 2021. "Did manure improve saline water irrigation threshold of winter wheat? A 3-year field investigation," Agricultural Water Management, Elsevier, vol. 258(C).
    10. Rakhwe Kama & Yuan Liu & Jibin Song & Abdoul Kader Mounkaila Hamani & Shouqiang Zhao & Siyi Li & Sekouna Diatta & Fengxia Yang & Zhongyang Li, 2023. "Treated Livestock Wastewater Irrigation Is Safe for Maize ( Zea mays ) and Soybean ( Glycine max ) Intercropping System Considering Heavy Metals Migration in Soil–Plant System," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    11. Sahil Bhatia & S. P. Singh, 2024. "Assessing Groundwater Use Efficiency and Productivity across Punjab Agriculture: District and Farm Size Perspectives," Agriculture, MDPI, vol. 14(8), pages 1-24, August.
    12. Memon, Shamim Ara & Sheikh, Irfan Ahemd & Talpur, Mashooque Ali & Mangrio, Munir Ahmed, 2021. "Impact of deficit irrigation strategies on winter wheat in semi-arid climate of sindh," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Zhou, Shiwei & Ye, Fan & Xia, Dufei & Liu, Zijin & Wu, Yangzhong & Chen, Fu, 2023. "Climate change impacts assessment and developing adaptation strategies for rainfed foxtail millet in northern Shanxi, China," Agricultural Water Management, Elsevier, vol. 290(C).
    14. Tomáš Středa & Jana Hajzlerová & Jhonny Alba-Mejía & Ivana Jovanović & Nicole Frantová & Hana Středová, 2024. "Quo vadis, breeding for an efficient root system, in the era of climate change?," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 60(4), pages 181-211.
    15. Scholz, Roland W. & Wellmer, Friedrich-Wilhelm, 2015. "Losses and use efficiencies along the phosphorus cycle – Part 2: Understanding the concept of efficiency," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 259-274.
    16. Luo, Zhibo & Ma, Shujie & Hu, Shanying & Chen, Dingjiang, 2017. "Towards the sustainable development of the regional phosphorus resources industry in China: A system dynamics approach," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 186-197.
    17. Farooq, Muhammad & Hussain, Mubshar & Ul-Allah, Sami & Siddique, Kadambot H.M., 2019. "Physiological and agronomic approaches for improving water-use efficiency in crop plants," Agricultural Water Management, Elsevier, vol. 219(C), pages 95-108.
    18. Yang, Lei & Fang, Xiangyang & Zhou, Jie & Zhao, Jie & Hou, Xiqing & Yang, Yadong & Zang, Huadong & Zeng, Zhaohai, 2024. "Optimal irrigation for wheat-maize rotation depending on precipitation in the North China Plain: Evidence from a four-year experiment," Agricultural Water Management, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:263:y:2022:i:c:s0378377422000282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.