IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v290y2023ics0378377423004572.html
   My bibliography  Save this article

Response of soil health index to untreated wastewater irrigation in selected farms under different vegetable types

Author

Listed:
  • Rezapour, Salar
  • Alamdari, Parisa
  • Kalavrouziotis, Ioannis K.

Abstract

Crop irrigation with wastewater has drawn global attention in water-scarce areas as a strategy to offset water scarcity. However, the response of soil ecosystem functioning and soil health to long-term and continuous wastewater (WW) irrigation has not been well-understood. A total of 12 vegetable farms irrigated with WW and fresh water (FW) were analyzed to assess WW irrigation impacts on soil health using the minimum data set (MDS) and soil health index (SHI) framework. We determined the combination of soil physicochemical, nutritional, and biological indicators (22 soil indicators) along with linear SHI (L- SHI) and nonlinear SHI (NL- SHI) quantification approaches in the WW-irrigated fields versus the FW-irrigated fields. Significant changes were observed in most soil attributes in the WW-irrigated farms versus the FW-irrigated farms. These changes could mostly improve soil health (e.g., soil stability index, exchangeable cations, organic matter (OM), total N, and available P), but some of them have a degrading effect on soil health (e.g., electrical conductivity (EC), sodium absorption ratio (SAR), and heavy metals). Soil health indicators identified through the MDS approach were clay, EC, OM, exchangeable K, Pb, and soil microbial respiration, contributing to the SHI value by 40.6%, 40.6%, 23.8%, 23.8%, 20.8%, and 14.9%, respectively. The SHI values computed through the non-linear scoring technique were more sensitive to WW irrigation than those computed through the linear scoring technique, suggesting that NL- SHI would outperform L- SHI in representing variations in soil functions. The L- SHI and NL- SHI values were 17–31% and 21–32% higher in the WW-irrigated farms than in the FW-irrigated farms, respectively, suggesting a good improvement in soil capacity and functions after WW irrigation. To conclude, our results revealed that an integrated SHI, particularly NL- SHI, would be more instrumental for evaluating post-WW irrigation soil functions and soil health in the WW-affected croplands than single soil indicators.

Suggested Citation

  • Rezapour, Salar & Alamdari, Parisa & Kalavrouziotis, Ioannis K., 2023. "Response of soil health index to untreated wastewater irrigation in selected farms under different vegetable types," Agricultural Water Management, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:agiwat:v:290:y:2023:i:c:s0378377423004572
    DOI: 10.1016/j.agwat.2023.108592
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108592?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stacy Slobodiuk & Caitlin Niven & Greer Arthur & Siddhartha Thakur & Ayse Ercumen, 2021. "Does Irrigation with Treated and Untreated Wastewater Increase Antimicrobial Resistance in Soil and Water: A Systematic Review," IJERPH, MDPI, vol. 18(21), pages 1-19, October.
    2. Jalil, Hawzhin M. & Rezapour, Salar & Nouri, Amin & Joshi, Navneet, 2022. "Assessing the ecological and health implications of soil heavy metals in vegetable irrigated with wastewater in calcareous environments," Agricultural Water Management, Elsevier, vol. 272(C).
    3. Urbano, Vanessa Ribeiro & Mendonça, Thaís Grandizoli & Bastos, Reinaldo Gaspar & Souza, Claudinei Fonseca, 2017. "Effects of treated wastewater irrigation on soil properties and lettuce yield," Agricultural Water Management, Elsevier, vol. 181(C), pages 108-115.
    4. Atanu Mukherjee & Rattan Lal, 2014. "Comparison of Soil Quality Index Using Three Methods," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-15, August.
    5. Salar Rezapour & Amin Nouri & Hawzhin M. Jalil & Shawn A. Hawkins & Scott B. Lukas, 2021. "Influence of Treated Wastewater Irrigation on Soil Nutritional-Chemical Attributes Using Soil Quality Index," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    6. Gorfie, Belihu Nigatu & Tuhar, Abraham Woldemichael & Keraga, Amare shiberu & Woldeyohannes, Aemiro Bezabih, 2022. "Effect of brewery wastewater irrigation on soil characteristics and lettuce (Lactuca sativa) crop in Ethiopia," Agricultural Water Management, Elsevier, vol. 269(C).
    7. Paudel, Indira & Bar-Tal, Asher & Levy, Guy J. & Rotbart, Nativ & Ephrath, Jhonathan E. & Cohen, Shabtai, 2018. "Treated wastewater irrigation: Soil variables and grapefruit tree performance," Agricultural Water Management, Elsevier, vol. 204(C), pages 126-137.
    8. Manzoor Qadir & Pay Drechsel & Blanca Jiménez Cisneros & Younggy Kim & Amit Pramanik & Praem Mehta & Oluwabusola Olaniyan, 2020. "Global and regional potential of wastewater as a water, nutrient and energy source," Natural Resources Forum, Blackwell Publishing, vol. 44(1), pages 40-51, February.
    9. Qadir, M. & Drechsel, Pay & Cisneros, B. J. & Kim, Y. & Pramanik, A. & Mehta, P. & Olaniyan, O., 2020. "Global and regional potential of wastewater as a water, nutrient and energy source," Papers published in Journals (Open Access), International Water Management Institute, pages 44(1):40-51.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasileios A. Tzanakakis & Andrea G. Capodaglio & Andreas N. Angelakis, 2023. "Insights into Global Water Reuse Opportunities," Sustainability, MDPI, vol. 15(17), pages 1-30, August.
    2. Drechsel, Pay & Qadir, M. & Galibourg, D., 2022. "The WHO guidelines for safe wastewater use in agriculture: a review of implementation challenges and possible solutions in the global south," Papers published in Journals (Open Access), International Water Management Institute, pages 1-14(6):864.
    3. Ascioti, Fortunato A. & Mangano, Maria Cristina & Marcianò, Claudio & Sarà, Gianluca, 2022. "The sanitation service of seagrasses – Dependencies and implications for the estimation of avoided costs," Ecosystem Services, Elsevier, vol. 54(C).
    4. Chloé Grison & Stef Koop & Steven Eisenreich & Jan Hofman & I-Shin Chang & Jing Wu & Dragan Savic & Kees Leeuwen, 2023. "Integrated Water Resources Management in Cities in the World: Global Challenges," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2787-2803, May.
    5. Sylwia Myszograj & Dariusz Bocheński & Mirosław Mąkowski & Ewelina Płuciennik-Koropczuk, 2021. "Biogas, Solar and Geothermal Energy—The Way to a Net-Zero Energy Wastewater Treatment Plant—A Case Study," Energies, MDPI, vol. 14(21), pages 1-15, October.
    6. Vicent Hernández-Chover & Águeda Bellver-Domingo & Lledó Castellet-Viciano & Francesc Hernández-Sancho, 2024. "AI Applied to the Circular Economy: An Approach in the Wastewater Sector," Sustainability, MDPI, vol. 16(4), pages 1-18, February.
    7. Konstantina Fotia & George Nanos & Pantelis Barouchas & Markos Giannelos & Aikaterini Linardi & Aikaterini Vallianatou & Paraskevi Mpeza & Ioannis Tsirogiannis, 2022. "Growth Development, Physiological Status and Water Footprint Assessment of Nursery Young Olive Trees ( Olea europaea L. ‘Konservolea’) Irrigated with Urban Treated Wastewater," Resources, MDPI, vol. 11(5), pages 1-14, April.
    8. Wirginia Tomczak & Marek Gryta, 2022. "Energy-Efficient AnMBRs Technology for Treatment of Wastewaters: A Review," Energies, MDPI, vol. 15(14), pages 1-40, July.
    9. Débora Cynamon Kligerman & Aline Stelling Zanatta & Graziella de Araújo Toledo & Joseli Maria da Rocha Nogueira, 2023. "Path toward Sustainability in Wastewater Management in Brazil," IJERPH, MDPI, vol. 20(16), pages 1-19, August.
    10. Tawfik, Mohamed Hassan & Al-Zawaidah, Hadeel & Hoogesteger, J. & Al-Zu'bi, Maha & Hellegers, Petra & Mateo-Sagasta, Javier & Elmahdi, A., 2023. "Shifting waters: the challenges of transitioning from freshwater to treated wastewater irrigation in the northern Jordan Valley," Papers published in Journals (Open Access), International Water Management Institute, pages 15(7):1315..
    11. Simhayov, Reuven & Ohana-Levi, Noa & Shenker, Moshe & Netzer, Yishai, 2023. "Effect of long-term treated wastewater irrigation on soil sodium levels and table grapevines' health," Agricultural Water Management, Elsevier, vol. 275(C).
    12. Odabaş Baş, Gözde & Aydınalp Köksal, Merih, 2022. "Environmental and techno-economic analysis of the integration of biogas and solar power systems into urban wastewater treatment plants," Renewable Energy, Elsevier, vol. 196(C), pages 579-597.
    13. Balengayabo, Jonas G. & Kassenga, Gabriel R. & Mgana, Shaaban M. & Salukele, Fredrick, 2024. "Impact of recurring irrigation with treated domestic wastewater on heavy metal accumulation in the soil," Agricultural Water Management, Elsevier, vol. 297(C).
    14. Alan Alvarez-Holguin & Gabriel Sosa-Perez & Omar Castor Ponce-Garcia & Carlos Rene Lara-Macias & Federico Villarreal-Guerrero & Carlos Gustavo Monzon-Burgos & Jesus Manuel Ochoa-Rivero, 2022. "The Impact of Treated Wastewater Irrigation on the Metabolism of Barley Grown in Arid and Semi-Arid Regions," IJERPH, MDPI, vol. 19(4), pages 1-16, February.
    15. Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," GLO Discussion Paper Series 1445, Global Labor Organization (GLO).
    16. Russo, David & Laufer, Asher & Bar-Tal, Asher, 2020. "Improving water uptake by trees planted on a clayey soil and irrigated with low-quality water by various management means: A numerical study," Agricultural Water Management, Elsevier, vol. 229(C).
    17. Zeyu Shi & Zhongke Bai & Donggang Guo & Meijing Chen, 2021. "Develop a Soil Quality Index to Study the Results of Black Locust on Soil Quality below Different Allocation Patterns," Land, MDPI, vol. 10(8), pages 1-16, July.
    18. Sana Khalid & Muhammad Shahid & Natasha & Irshad Bibi & Tania Sarwar & Ali Haidar Shah & Nabeel Khan Niazi, 2018. "A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries," IJERPH, MDPI, vol. 15(5), pages 1-36, May.
    19. Feder, Frédéric, 2021. "Irrigation with treated wastewater in humid regions: Effects on Nitisols, sugarcane yield and quality," Agricultural Water Management, Elsevier, vol. 247(C).
    20. Mohamed K. Abdel-Fattah & Elsayed Said Mohamed & Enas M. Wagdi & Sahar A. Shahin & Ali A. Aldosari & Rosa Lasaponara & Manal A. Alnaimy, 2021. "Quantitative Evaluation of Soil Quality Using Principal Component Analysis: The Case Study of El-Fayoum Depression Egypt," Sustainability, MDPI, vol. 13(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:290:y:2023:i:c:s0378377423004572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.