IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6321-d1441640.html
   My bibliography  Save this article

Hydrogel Applications in Nitrogen and Phosphorus Compounds Recovery from Water and Wastewater: An Overview

Author

Listed:
  • Daniel Szopa

    (Faculty of Chemistry, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland)

  • Paulina Wróbel

    (Faculty of Chemistry, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland)

  • Beata Anwajler

    (Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland)

  • Anna Witek-Krowiak

    (Faculty of Chemistry, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland)

Abstract

This article provides an overview of the diverse applications of hydrogels in nutrient recovery from water and wastewater. Due to their unique properties, such as high water-retention capacity, nutrient rerelease, and tunable porosity, hydrogels have emerged as promising materials for efficient nutrient capture and recycling. It has been suggested that hydrogels, depending on their composition, can be reused in agriculture, especially in drought-prone areas. Further research paths have been identified that could expand their application in these regions. However, the main focus of the article is to highlight the current gaps in understanding how hydrogels bind nitrogen and phosphorus compounds. The study underscores the need for research that specifically examines how different components of hydrogel matrices interact with each other and with recovered nutrients. Furthermore, it is essential to assess how various nutrient-recovery parameters, such as temperature, pH, and heavy metal content, interact with each other and with specific matrix compositions. This type of research is crucial for enhancing both the recovery efficiency and selectivity of these hydrogels, which are critical for advancing nutrient-recovery technologies and agricultural applications. A comprehensive research approach involves using structured research methodologies and optimization techniques to streamline studies and identify crucial relationships.

Suggested Citation

  • Daniel Szopa & Paulina Wróbel & Beata Anwajler & Anna Witek-Krowiak, 2024. "Hydrogel Applications in Nitrogen and Phosphorus Compounds Recovery from Water and Wastewater: An Overview," Sustainability, MDPI, vol. 16(15), pages 1-29, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6321-:d:1441640
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6321/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6321/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessio Siciliano & Carlo Limonti & Giulia Maria Curcio & Raffaele Molinari, 2020. "Advances in Struvite Precipitation Technologies for Nutrients Removal and Recovery from Aqueous Waste and Wastewater," Sustainability, MDPI, vol. 12(18), pages 1-35, September.
    2. Manzoor Qadir & Pay Drechsel & Blanca Jiménez Cisneros & Younggy Kim & Amit Pramanik & Praem Mehta & Oluwabusola Olaniyan, 2020. "Global and regional potential of wastewater as a water, nutrient and energy source," Natural Resources Forum, Blackwell Publishing, vol. 44(1), pages 40-51, February.
    3. Qadir, M. & Drechsel, Pay & Cisneros, B. J. & Kim, Y. & Pramanik, A. & Mehta, P. & Olaniyan, O., 2020. "Global and regional potential of wastewater as a water, nutrient and energy source," Papers published in Journals (Open Access), International Water Management Institute, pages 44(1):40-51.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasileios A. Tzanakakis & Andrea G. Capodaglio & Andreas N. Angelakis, 2023. "Insights into Global Water Reuse Opportunities," Sustainability, MDPI, vol. 15(17), pages 1-30, August.
    2. Drechsel, Pay & Qadir, M. & Galibourg, D., 2022. "The WHO guidelines for safe wastewater use in agriculture: a review of implementation challenges and possible solutions in the global south," Papers published in Journals (Open Access), International Water Management Institute, pages 1-14(6):864.
    3. Ascioti, Fortunato A. & Mangano, Maria Cristina & Marcianò, Claudio & Sarà, Gianluca, 2022. "The sanitation service of seagrasses – Dependencies and implications for the estimation of avoided costs," Ecosystem Services, Elsevier, vol. 54(C).
    4. Chloé Grison & Stef Koop & Steven Eisenreich & Jan Hofman & I-Shin Chang & Jing Wu & Dragan Savic & Kees Leeuwen, 2023. "Integrated Water Resources Management in Cities in the World: Global Challenges," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2787-2803, May.
    5. Sylwia Myszograj & Dariusz Bocheński & Mirosław Mąkowski & Ewelina Płuciennik-Koropczuk, 2021. "Biogas, Solar and Geothermal Energy—The Way to a Net-Zero Energy Wastewater Treatment Plant—A Case Study," Energies, MDPI, vol. 14(21), pages 1-15, October.
    6. Vicent Hernández-Chover & Águeda Bellver-Domingo & Lledó Castellet-Viciano & Francesc Hernández-Sancho, 2024. "AI Applied to the Circular Economy: An Approach in the Wastewater Sector," Sustainability, MDPI, vol. 16(4), pages 1-18, February.
    7. Konstantina Fotia & George Nanos & Pantelis Barouchas & Markos Giannelos & Aikaterini Linardi & Aikaterini Vallianatou & Paraskevi Mpeza & Ioannis Tsirogiannis, 2022. "Growth Development, Physiological Status and Water Footprint Assessment of Nursery Young Olive Trees ( Olea europaea L. ‘Konservolea’) Irrigated with Urban Treated Wastewater," Resources, MDPI, vol. 11(5), pages 1-14, April.
    8. Wirginia Tomczak & Marek Gryta, 2022. "Energy-Efficient AnMBRs Technology for Treatment of Wastewaters: A Review," Energies, MDPI, vol. 15(14), pages 1-40, July.
    9. Débora Cynamon Kligerman & Aline Stelling Zanatta & Graziella de Araújo Toledo & Joseli Maria da Rocha Nogueira, 2023. "Path toward Sustainability in Wastewater Management in Brazil," IJERPH, MDPI, vol. 20(16), pages 1-19, August.
    10. Tawfik, Mohamed Hassan & Al-Zawaidah, Hadeel & Hoogesteger, J. & Al-Zu'bi, Maha & Hellegers, Petra & Mateo-Sagasta, Javier & Elmahdi, A., 2023. "Shifting waters: the challenges of transitioning from freshwater to treated wastewater irrigation in the northern Jordan Valley," Papers published in Journals (Open Access), International Water Management Institute, pages 15(7):1315..
    11. Simhayov, Reuven & Ohana-Levi, Noa & Shenker, Moshe & Netzer, Yishai, 2023. "Effect of long-term treated wastewater irrigation on soil sodium levels and table grapevines' health," Agricultural Water Management, Elsevier, vol. 275(C).
    12. Rezapour, Salar & Alamdari, Parisa & Kalavrouziotis, Ioannis K., 2023. "Response of soil health index to untreated wastewater irrigation in selected farms under different vegetable types," Agricultural Water Management, Elsevier, vol. 290(C).
    13. Odabaş Baş, Gözde & Aydınalp Köksal, Merih, 2022. "Environmental and techno-economic analysis of the integration of biogas and solar power systems into urban wastewater treatment plants," Renewable Energy, Elsevier, vol. 196(C), pages 579-597.
    14. Alan Alvarez-Holguin & Gabriel Sosa-Perez & Omar Castor Ponce-Garcia & Carlos Rene Lara-Macias & Federico Villarreal-Guerrero & Carlos Gustavo Monzon-Burgos & Jesus Manuel Ochoa-Rivero, 2022. "The Impact of Treated Wastewater Irrigation on the Metabolism of Barley Grown in Arid and Semi-Arid Regions," IJERPH, MDPI, vol. 19(4), pages 1-16, February.
    15. Goknur Sisman-Aydin & Kemal Simsek, 2022. "Municipal Wastewater Effects on the Performance of Nutrient Removal, and Lipid, Carbohydrate, and Protein Productivity of Blue-Green Algae Chroococcus turgidus," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    16. Jalil, Hawzhin M. & Rezapour, Salar & Nouri, Amin & Joshi, Navneet, 2022. "Assessing the ecological and health implications of soil heavy metals in vegetable irrigated with wastewater in calcareous environments," Agricultural Water Management, Elsevier, vol. 272(C).
    17. Kazi Parvez Fattah & Sarah Sinno & Serter Atabay & Zahid Khan & Zahraa Al-Dawood & Alaa Kamel Yasser & Riyad Temam, 2022. "Impact of Magnesium Sources for Phosphate Recovery and/or Removal from Waste," Energies, MDPI, vol. 15(13), pages 1-12, June.
    18. Yifan Zhou & Yingying Zhu & Jinyuan Zhu & Chaoran Li & Geng Chen, 2023. "A Comprehensive Review on Wastewater Nitrogen Removal and Its Recovery Processes," IJERPH, MDPI, vol. 20(4), pages 1-27, February.
    19. Augusto Bianchini & Jessica Rossi, 2020. "An Integrated Industry-Based Methodology to Unlock Full-Scale Implementation of Phosphorus Recovery Technology," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    20. Marzena Smol, 2021. "Transition to Circular Economy in the Fertilizer Sector—Analysis of Recommended Directions and End-Users’ Perception of Waste-Based Products in Poland," Energies, MDPI, vol. 14(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6321-:d:1441640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.