IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v282y2023ics0378377423001336.html
   My bibliography  Save this article

Assessing in-field soil moisture variability in the active root zone using granular matrix sensors

Author

Listed:
  • Hodges, Blade
  • Tagert, Mary Love
  • Paz, Joel O.
  • Meng, Qingmin

Abstract

Site-specific irrigation decisions require information about variations in soil moisture within the active rooting depth of the crop. Producers have been using soil moisture sensors to make irrigation decisions, and soil moisture sensors have been shown to help reduce water usage without reducing yields. There are still unanswered questions on improving efficiency with soil moisture sensors based on density and location of sensors within a field. This three-year study used sensors to evaluate the spatio-temporal variability of soil moisture across an 18-ha production field in a corn/soybean rotation. A 55 m by 55 m grid was laid on the field, resulting in 44 sampling points that fell either underneath the center-pivot irrigation or the end gun. At each point location, two Watermark granular matrix sensors were installed at depths of 31 and 61 cm for 2018 and 2020 and an additional 76 – cm sensor in 2019. Analysis of soil samples collected in year one revealed fairly homogeneous soils across the field with silty clay loam as the major soil type and only eight percent silt loam. Plant height and leaf area index (LAI) were measured weekly at each of the 44 sampling points. Inverse distance weighted (IDW) interpolation methods were used to predict soil water tension (SWT) values for locations between known points and aid in sensor density and placement within the field. Linear regression was used to model the relationship of LAI and plant height with soil matric potential to find surrogate methods for predicting SWT. The IDW results show that when uniform irrigation applications are made to the field, fewer sensors that are placed in better locations throughout the field can be as useful as a densely gridded array of sensors. Results showed that, while not strong, plant height had a better relationship to SWT than LAI.

Suggested Citation

  • Hodges, Blade & Tagert, Mary Love & Paz, Joel O. & Meng, Qingmin, 2023. "Assessing in-field soil moisture variability in the active root zone using granular matrix sensors," Agricultural Water Management, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:agiwat:v:282:y:2023:i:c:s0378377423001336
    DOI: 10.1016/j.agwat.2023.108268
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423001336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108268?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yetbarek, Ephrem & Ojha, Richa, 2020. "Spatio-temporal variability of soil moisture in a cropped agricultural plot within the Ganga Basin, India," Agricultural Water Management, Elsevier, vol. 234(C).
    2. Lo, Tsz Him & Rudnick, Daran R. & Singh, Jasreman & Nakabuye, Hope Njuki & Katimbo, Abia & Heeren, Derek M. & Ge, Yufeng, 2020. "Field assessment of interreplicate variability from eight electromagnetic soil moisture sensors," Agricultural Water Management, Elsevier, vol. 231(C).
    3. Barker, J. Burdette & Franz, Trenton E. & Heeren, Derek M. & Neale, Christopher M.U. & Luck, Joe D., 2017. "Soil water content monitoring for irrigation management: A geostatistical analysis," Agricultural Water Management, Elsevier, vol. 188(C), pages 36-49.
    4. Soulis, Konstantinos X. & Elmaloglou, Stamatios & Dercas, Nicholas, 2015. "Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture based drip irrigation scheduling systems," Agricultural Water Management, Elsevier, vol. 148(C), pages 258-268.
    5. Landrum, Carla & Castrignanò, Annamaria & Mueller, Tom & Zourarakis, Demetrio & Zhu, Junfeng & De Benedetto, Daniela, 2015. "An approach for delineating homogeneous within-field zones using proximal sensing and multivariate geostatistics," Agricultural Water Management, Elsevier, vol. 147(C), pages 144-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Siyao & Li, Jianzhu & Zhang, Ting & Feng, Ping & Liu, Weilin, 2024. "Response of vegetation to SPI and driving factors in Chinese mainland," Agricultural Water Management, Elsevier, vol. 291(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao, Maqian & Yang, Wenhan & Hu, Wei & Clothier, Brent & Zou, Songyan & Li, Doudou & Di, Nan & Liu, Jinqiang & Liu, Yang & Duan, Jie & Xi, Benye, 2021. "The optimal tensiometer installation position for scheduling border irrigation in Populus tomentosa plantations," Agricultural Water Management, Elsevier, vol. 253(C).
    2. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    3. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    4. Marjan Aziz & Madeeha Khan & Naveeda Anjum & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim & Siva K. Balasundram & Muhammad Aleem, 2022. "Scientific Irrigation Scheduling for Sustainable Production in Olive Groves," Agriculture, MDPI, vol. 12(4), pages 1-14, April.
    5. Nolz, R. & Cepuder, P. & Balas, J. & Loiskandl, W., 2016. "Soil water monitoring in a vineyard and assessment of unsaturated hydraulic parameters as thresholds for irrigation management," Agricultural Water Management, Elsevier, vol. 164(P2), pages 235-242.
    6. França, Ana Carolina Ferreira & Coelho, Rubens Duarte & da Silva Gundim, Alice & de Oliveira Costa, Jéfferson & Quiloango-Chimarro, Carlos Alberto, 2024. "Effects of different irrigation scheduling methods on physiology, yield, and irrigation water productivity of soybean varieties," Agricultural Water Management, Elsevier, vol. 293(C).
    7. Barker, J. Burdette & Heeren, Derek M. & Neale, Christopher M.U. & Rudnick, Daran R., 2018. "Evaluation of variable rate irrigation using a remote-sensing-based model," Agricultural Water Management, Elsevier, vol. 203(C), pages 63-74.
    8. Yang, Meijian & Wang, Guiling & Lazin, Rehenuma & Shen, Xinyi & Anagnostou, Emmanouil, 2021. "Impact of planting time soil moisture on cereal crop yield in the Upper Blue Nile Basin: A novel insight towards agricultural water management," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Domínguez-Niño, Jesús María & Oliver-Manera, Jordi & Girona, Joan & Casadesús, Jaume, 2020. "Differential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors," Agricultural Water Management, Elsevier, vol. 228(C).
    10. M. Safdar Munir & Imran Sarwar Bajwa & M. Asif Naeem & Bushra Ramzan, 2018. "Design and Implementation of an IoT System for Smart Energy Consumption and Smart Irrigation in Tunnel Farming," Energies, MDPI, vol. 11(12), pages 1-18, December.
    11. Mwinuka, Paul Reuben & Mbilinyi, Boniface P. & Mbungu, Winfred B. & Mourice, Sixbert K. & Mahoo, H.F. & Schmitter, Petra, 2021. "The feasibility of hand-held thermal and UAV-based multispectral imaging for canopy water status assessment and yield prediction of irrigated African eggplant (Solanum aethopicum L)," Agricultural Water Management, Elsevier, vol. 245(C).
    12. Hongbo Wang & Hui Cao & Fuchang Jiang & Xingpeng Wang & Yang Gao, 2022. "Analysis of Soil Moisture, Temperature, and Salinity in Cotton Field under Non-Mulched Drip Irrigation in South Xinjiang," Agriculture, MDPI, vol. 12(10), pages 1-15, October.
    13. Zhang, Yuanhong & Li, Haoyu & Sun, Yuanguang & Zhang, Qi & Liu, Pengzhao & Wang, Rui & Li, Jun, 2022. "Temporal stability analysis evaluates soil water sustainability of different cropping systems in a dryland agricultural ecosystem," Agricultural Water Management, Elsevier, vol. 272(C).
    14. Losciale, Pasquale & Gaeta, Liliana & Corsi, Mariadomenica & Galeone, Ciro & Tarricone, Luigi & Leogrande, Rita & Stellacci, Anna Maria, 2023. "Physiological responses of apricot and peach cultivars under progressive water shortage: Different crop signals for anisohydric and isohydric behaviours," Agricultural Water Management, Elsevier, vol. 286(C).
    15. Yonela Mndela & Naledzani Ndou & Adolph Nyamugama, 2023. "Irrigation Scheduling for Small-Scale Crops Based on Crop Water Content Patterns Derived from UAV Multispectral Imagery," Sustainability, MDPI, vol. 15(15), pages 1-21, August.
    16. Ming Li & Yueguan Yan, 2024. "Comparative Analysis of Machine-Learning Models for Soil Moisture Estimation Using High-Resolution Remote-Sensing Data," Land, MDPI, vol. 13(8), pages 1-24, August.
    17. Landrum, Carla & Castrignanó, Annamaria & Zourarakis, Demetrio & Mueller, Tom, 2016. "Assessing the time stability of soil moisture patterns using statistical and geostatistical approaches," Agricultural Water Management, Elsevier, vol. 177(C), pages 118-127.
    18. Iftikhar Ahmed Saeed & Minjuan Wang & Yanzhao Ren & Qinglan Shi & Muhammad Hammad Malik & Sha Tao & Qiang Cai & Wanlin Gao, 2019. "Performance analysis of dielectric soil moisture sensor," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 14(4), pages 195-199.
    19. Bwambale, Erion & Abagale, Felix K. & Anornu, Geophrey K., 2022. "Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review," Agricultural Water Management, Elsevier, vol. 260(C).
    20. Jeet Chand & Guna Hewa & Ali Hassanli & Baden Myers, 2020. "Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse," Agriculture, MDPI, vol. 10(7), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:282:y:2023:i:c:s0378377423001336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.