IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v281y2023ics0378377423001245.html
   My bibliography  Save this article

Onset and severity thresholds of drought impacts on wheat

Author

Listed:
  • Wang, Runyuan
  • Zhao, Hong
  • Qi, Yue
  • Zhao, Funian
  • Chen, Fei
  • Ding, Wenkui
  • Jiang, Jufang
  • Zhang, Kai
  • Wang, Heling

Abstract

Drought often causes tremendous agricultural impacts and economic losses, but drought impacts are difficult to assess and quantify. Improving drought monitoring and early warning systems by linking indicators to impacts can reduce social vulnerability. However, it is still challenging to establish quantitative links between drought indicators and impacts during drought stress. In this study, using experimental observation records during drought in different climatic zones in China, we established the quantitative links between the drought indicator based on soil moisture and the affected biological parameters of wheat (Triticum aestivum L.), determined the thresholds of the onset and severity of the impact of drought on wheat, and found that the onset thresholds had a convergence across climate zones and the severity thresholds were different in different climate zones. This study may provide a new understanding for evaluating drought stress or severity and provide an important reference to better understand the hazard itself and carry out impact-based drought monitoring and early warning.

Suggested Citation

  • Wang, Runyuan & Zhao, Hong & Qi, Yue & Zhao, Funian & Chen, Fei & Ding, Wenkui & Jiang, Jufang & Zhang, Kai & Wang, Heling, 2023. "Onset and severity thresholds of drought impacts on wheat," Agricultural Water Management, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:agiwat:v:281:y:2023:i:c:s0378377423001245
    DOI: 10.1016/j.agwat.2023.108259
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423001245
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    2. Abdol Rassoul Zarei & Ali Shabani & Mohammad Reza Mahmoudi, 2020. "Evaluation of the Influence of Occurrence Time of Drought on the Annual Yield of Rain-Fed Winter Wheat Using Backward Multiple Generalized Estimation Equation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2911-2931, July.
    3. W. Tezara & V. J. Mitchell & S. D. Driscoll & D. W. Lawlor, 1999. "Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP," Nature, Nature, vol. 401(6756), pages 914-917, October.
    4. Shadman, F. & Sadeghipour, S. & Moghavvemi, M. & Saidur, R., 2016. "Drought and energy security in key ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 50-58.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    2. Kedi Liu & Ranran Wang & Inge Schrijver & Rutger Hoekstra, 2024. "Can we project well-being? Towards integral well-being projections in climate models and beyond," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    3. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    4. El-Saied E. Metwaly & Hatim M. Al-Yasi & Esmat F. Ali & Hamada A. Farouk & Saad Farouk, 2022. "Deteriorating Harmful Effects of Drought in Cucumber by Spraying Glycinebetaine," Agriculture, MDPI, vol. 12(12), pages 1-16, December.
    5. Yang Li & Dingwen Zhang & Ying Wen & Xiaoling Liu & Yi Zhang & Guangmei Wang, 2024. "Spatiotemporal Patterns and Driving Factors of Carbon Footprint in Coastal Saline Cropland Ecosystems: A Case Study of the Yellow River Delta, China," Land, MDPI, vol. 13(12), pages 1-18, December.
    6. repec:ags:aaea22:335489 is not listed on IDEAS
    7. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    8. N. Zhang & H. Huang, 2018. "Assessment of world disaster severity processed by Gaussian blur based on large historical data: casualties as an evaluating indicator," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 173-187, May.
    9. Liu, Zhipeng & Jiao, Xiyun & Zhu, Chengli & Katul, Gabriel G. & Ma, Junyong & Guo, Weihua, 2021. "Micro-climatic and crop responses to micro-sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Teresa Armada Brás & Jonas Jägermeyr & Júlia Seixas, 2019. "Exposure of the EU-28 food imports to extreme weather disasters in exporting countries," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(6), pages 1373-1393, December.
    11. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    12. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    13. Yusifzada, Tural, 2022. "Response of Inflation to the Climate Stress: Evidence from Azerbaijan," MPRA Paper 116522, University Library of Munich, Germany, revised 20 Sep 2022.
    14. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    15. Phetheet, Jirapat & Hill, Mary C. & Barron, Robert W. & Gray, Benjamin J. & Wu, Hongyu & Amanor-Boadu, Vincent & Heger, Wade & Kisekka, Isaya & Golden, Bill & Rossi, Matthew W., 2021. "Relating agriculture, energy, and water decisions to farm incomes and climate projections using two freeware programs, FEWCalc and DSSAT," Agricultural Systems, Elsevier, vol. 193(C).
    16. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    17. Balázs Varga & Zsuzsanna Farkas & Emese Varga-László & Gyula Vida & Ottó Veisz, 2022. "Elevated Atmospheric CO 2 Concentration Influences the Rooting Habits of Winter-Wheat ( Triticum aestivum L.) Varieties," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    18. Qimeng Pan & Lysa Porth & Hong Li, 2022. "Assessing the Effectiveness of the Actuaries Climate Index for Estimating the Impact of Extreme Weather on Crop Yield and Insurance Applications," Sustainability, MDPI, vol. 14(11), pages 1-24, June.
    19. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    20. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).
    21. Kelly R. Wilson & Robert L. Myers & Mary K. Hendrickson & Emily A. Heaton, 2022. "Different Stakeholders’ Conceptualizations and Perspectives of Regenerative Agriculture Reveals More Consensus Than Discord," Sustainability, MDPI, vol. 14(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:281:y:2023:i:c:s0378377423001245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.