IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v279y2023ics0378377423000471.html
   My bibliography  Save this article

An intelligent irrigation management model for direct injection of solar pumping systems

Author

Listed:
  • Cervera-Gascó, Jorge
  • Montero, Jesús
  • Moreno, Miguel A.

Abstract

The photovoltaic pumping systems are useful for irrigation, but must ensure that water is applied to the crop as uniformly and efficiently as possible at all points of the irrigation subunit. To solve this problem, the I-Selector model was developed. It allowed to generate irrigation schedules with the application of quality criteria both for combinations of subunits studied individually (with a standard deviation in the applied water sheet: 2.8 m3·ha−1) and for combinations of several subunits studied working together depending on,among other things, the available photovoltaic energy and the extraction capacity of the well, allowing to compare and analyze the best irrigation strategy to be used and being a flexible model that can be used in any case of study. Thus, the I-Selector model has generated irrigation schedules to establish the optimal sequence of opening combinations of subunits distributed by daily time slots, thus indicating the convenience of its use at each time of day for the best use of water and energy in a high-power solar pumping system located in Albacete, Spain.

Suggested Citation

  • Cervera-Gascó, Jorge & Montero, Jesús & Moreno, Miguel A., 2023. "An intelligent irrigation management model for direct injection of solar pumping systems," Agricultural Water Management, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:agiwat:v:279:y:2023:i:c:s0378377423000471
    DOI: 10.1016/j.agwat.2023.108182
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423000471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jackson, Tamara M. & Khan, Shahbaz & Hafeez, Mohsin, 2010. "A comparative analysis of water application and energy consumption at the irrigated field level," Agricultural Water Management, Elsevier, vol. 97(10), pages 1477-1485, October.
    2. Bouzidi, B., 2011. "Viability of solar or wind for water pumping systems in the Algerian Sahara regions – case study Adrar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4436-4442.
    3. Playan, Enrique & Mateos, Luciano, 2006. "Modernization and optimization of irrigation systems to increase water productivity," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 100-116, February.
    4. Reca, J. & Torrente, C. & López-Luque, R. & Martínez, J., 2016. "Feasibility analysis of a standalone direct pumping photovoltaic system for irrigation in Mediterranean greenhouses," Renewable Energy, Elsevier, vol. 85(C), pages 1143-1154.
    5. Chandel, S.S. & Nagaraju Naik, M. & Chandel, Rahul, 2015. "Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1084-1099.
    6. Javier R. Ledesma & Rita H. Almeida & Luis Narvarte, 2022. "Modeling and Simulation of Multipumping Photovoltaic Irrigation Systems," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    7. Valverde, Pedro & Serralheiro, Ricardo & de Carvalho, Mário & Maia, Rodrigo & Oliveira, Bruno & Ramos, Vanessa, 2015. "Climate change impacts on irrigated agriculture in the Guadiana river basin (Portugal)," Agricultural Water Management, Elsevier, vol. 152(C), pages 17-30.
    8. Li, Guiqiang & Jin, Yi & Akram, M.W. & Chen, Xiao, 2017. "Research and current status of the solar photovoltaic water pumping system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 440-458.
    9. Aliyu, Mansur & Hassan, Ghassan & Said, Syed A. & Siddiqui, Muhammad U. & Alawami, Ali T. & Elamin, Ibrahim M., 2018. "A review of solar-powered water pumping systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 61-76.
    10. Poompavai, T. & Kowsalya, M., 2019. "Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 108-122.
    11. Tarjuelo, José M. & Rodriguez-Diaz, Juan A. & Abadía, Ricardo & Camacho, Emilio & Rocamora, Carmen & Moreno, Miguel A., 2015. "Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies," Agricultural Water Management, Elsevier, vol. 162(C), pages 67-77.
    12. López-López, Manuel & Espadafor, Mónica & Testi, Luca & Lorite, Ignacio Jesús & Orgaz, Francisco & Fereres, Elías, 2018. "Water use of irrigated almond trees when subjected to water deficits," Agricultural Water Management, Elsevier, vol. 195(C), pages 84-93.
    13. Pande, P.C. & Singh, A.K. & Ansari, S. & Vyas, S.K. & Dave, B.K., 2003. "Design development and testing of a solar PV pump based drip system for orchards," Renewable Energy, Elsevier, vol. 28(3), pages 385-396.
    14. Senol, Ramazan, 2012. "An analysis of solar energy and irrigation systems in Turkey," Energy Policy, Elsevier, vol. 47(C), pages 478-486.
    15. José Molina & José García Aróstegui & José Benavente & Consuelo Varela & Africa Hera & Juan López Geta, 2009. "Aquifers Overexploitation in SE Spain: A Proposal for the Integrated Analysis of Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2737-2760, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel Ángel Pardo Picazo & Juan Manzano Juárez & Diego García-Márquez, 2018. "Energy Consumption Optimization in Irrigation Networks Supplied by a Standalone Direct Pumping Photovoltaic System," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    2. Aliyu, Mansur & Hassan, Ghassan & Said, Syed A. & Siddiqui, Muhammad U. & Alawami, Ali T. & Elamin, Ibrahim M., 2018. "A review of solar-powered water pumping systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 61-76.
    3. Miguel Ángel Pardo & Ricardo Cobacho & Luis Bañón, 2020. "Standalone Photovoltaic Direct Pumping in Urban Water Pressurized Networks with Energy Storage in Tanks or Batteries," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    4. Mahesh Vinayak Hadole & Kamlesh Narayan Tiwari & Prabodh Bajpai, 2021. "Energy generation and flow rate prediction of photovoltaic water pumping system for irrigation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6722-6733, May.
    5. Rahman, Syed Mahbubur & Mori, Akihisa & Rahman, Syed Mustafizur, 2022. "How does climate adaptation co-benefits help scale-up solar-powered irrigation? A case of the Barind Tract, Bangladesh," Renewable Energy, Elsevier, vol. 182(C), pages 1039-1048.
    6. Aldo Barrueto Guzmán & Rodrigo Barraza Vicencio & Jorge Alfredo Ardila-Rey & Eduardo Núñez Ahumada & Arturo González Araya & Gerardo Arancibia Moreno, 2018. "A Cost-Effective Methodology for Sizing Solar PV Systems for Existing Irrigation Facilities in Chile," Energies, MDPI, vol. 11(7), pages 1-18, July.
    7. Ahmed, Eihab E.E. & Demirci, Alpaslan, 2022. "Multi-stage and multi-objective optimization for optimal sizing of stand-alone photovoltaic water pumping systems," Energy, Elsevier, vol. 252(C).
    8. Allouhi, A. & Buker, M.S. & El-houari, H. & Boharb, A. & Benzakour Amine, M. & Kousksou, T. & Jamil, A., 2019. "PV water pumping systems for domestic uses in remote areas: Sizing process, simulation and economic evaluation," Renewable Energy, Elsevier, vol. 132(C), pages 798-812.
    9. Naval, Natalia & Yusta, Jose M., 2022. "Comparative assessment of different solar tracking systems in the optimal management of PV-operated pumping stations," Renewable Energy, Elsevier, vol. 200(C), pages 931-941.
    10. Shao, Weiwei & Liu, Jiahong & Zhu, Mingming & Weng, Baisha & Wang, Ning & Huang, Hao & Yu, Yingdong & Yan, Dianyi & Jiang, Shan, 2018. "Evaluation of a photovoltaic water-supply scheme for the surface water system in Xiamen, China," Applied Energy, Elsevier, vol. 230(C), pages 357-373.
    11. Chandel, S.S. & Naik, M. Nagaraju & Chandel, Rahul, 2017. "Review of performance studies of direct coupled photovoltaic water pumping systems and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 163-175.
    12. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Abderrazek Saoudi & Saber Krim & Mohamed Faouzi Mimouni, 2021. "Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction Motor for Standalone Photovoltaic Water Pumping System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    14. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    15. Rubio-Aliaga, Alvaro & García-Cascales, M. Socorro & Sánchez-Lozano, Juan Miguel & Molina-Garcia, Angel, 2021. "MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example," Renewable Energy, Elsevier, vol. 163(C), pages 213-224.
    16. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    17. Miguel Ángel Pardo & Héctor Fernández & Antonio Jodar-Abellan, 2020. "Converting a Water Pressurized Network in a Small Town into a Solar Power Water System," Energies, MDPI, vol. 13(15), pages 1-26, August.
    18. Agir, Seven & Derin-Gure, Pinar & Senturk, Bilge, 2023. "Farmers’ perspectives on challenges and opportunities of agrivoltaics in Turkiye: An institutional perspective," Renewable Energy, Elsevier, vol. 212(C), pages 35-49.
    19. Tarjuelo, José M. & Rodriguez-Diaz, Juan A. & Abadía, Ricardo & Camacho, Emilio & Rocamora, Carmen & Moreno, Miguel A., 2015. "Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies," Agricultural Water Management, Elsevier, vol. 162(C), pages 67-77.
    20. Mushtaq, S. & Maraseni, T.N. & Reardon-Smith, K., 2013. "Climate change and water security: Estimating the greenhouse gas costs of achieving water security through investments in modern irrigation technology," Agricultural Systems, Elsevier, vol. 117(C), pages 78-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:279:y:2023:i:c:s0378377423000471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.